Главная >  Публикации 

 

Гипоталамическая регуляция



Экспериментальные исследования с выключением (разрушением) отдельных структур гипоталамуса и нарушением его нервных связей с другими отделами головного мозга позволили установить, что нервный контроль передней доли гипофиза осуществляется двумя механизмами (уровнями регуляции).

Первый уровень регуляции реализует так называемая гипофизотропная область гипоталамуса, которая контролирует исходную (базальную) секрецию передней доли гипофиза и нейрогипофизарную секрецию. Второй, более высокий уровень обеспечивается другими гипоталамическими и внегипоталамическими областями мозга (гиппокамп, передний таламус, средний мозг и др.), которые принимают участие в стимуляции или угнетении функции гипофиза. Внегипоталамические структуры мозга осуществляют важный нейроэндокринный контроль деятельности гипофиза и ответственны за суточный ритм секреции гормонов. Средний мозг, гиппокамп и переднемедиальное таламическое ядро участвуют в регуляции секреции АКТГ, гонадотропинов, пролактина, гормона роста. Кроме того, в гипоталамус проецируются также восходящие афферентные и прямые связи из сетчатого образования и среднего мозга, где локализуются дофаминергические и другие клетки, секретирующие различные моноамины.

Гипоталамус имеет богатую сеть кровеносных сосудов, которые в области срединного возвышения образуют портальную систему. Наиболее васкуляризированы супраоптическое и паравентрикулярное ядра. Гистологически область срединного возвышения представляет зону контактов, содержащую окончания многочисленных нейронов, локализованных в перечисленных ядрах гипоталамуса, по которым продукты секрета этих нейронов (гипофизотропные гормоны) достигают капилляров воротной (портальной) системы гипофиза. Венозные капилляры портальной системы имеют специальные отверстия (шунты), создающие возможность перехода соединений с достаточной молекулярной массой из крови в периваскулярные пространства срединного возвышения.

Гипоталамус, таким образом, является областью, трасформирующей информацию, поступающую по нервным путям из вышележащих отделов нервной системы, посредством изменения уровня нейротрансмиттеров (нейромедиаторов), к которым относятся различные моноамины: адреналин, норадреналин, дофамин, серотонин, ацетилхолин, g-аминомасляная кислота. Стрессовые ситуации и другие факторы приводят к изменению содержания, скорости синтеза и высвобождения моноаминов в гипоталамусе, которые в свою очередь изменяют скорость секреции гипоталамических и гипофизотропных гормонов, что и приводит к соответствующему изменению функциональной активности передней доли гипофиза.

Считается, что нейротрасмиттеры (моноамины) регулируют деятельность гипофиза посредством нескольких механизмов: а) участие в синаптической передаче информации, поступающей из лимбической системы мозга, на нейрон, продуцирующий гипофизотропные гормоны (пептиды); б) действие на мембрану гипоталамического нейрона и процесс высвобождения гипофизотропного гормона; в) изменение функциональной активности аксона гипоталамического нейрона в области капилляров портальной (воротной) системы гипофиза с модификацией транспорта гипофизотропного гормона в кровь; г) влияние на клетки передней доли гипофиза с увеличением или угнетением их секреторной активности или модификацией их ответа на действие гипофизотропных гормонов.

Таким образом, гипоталамус является местом, где нервные и эндокринные клетки взаимодействуют друг с другом, осуществляя быструю и высокоэффективную передачу информации, необходимой для быстрого ответа со стороны органа, систем и организма в целом с целью обепечения жизнедеятельности организма. Передача информации от клетки к клетке осуществляется химическими мессенджерами (гормоны и моноамины) и электрической активностью. Межклеточные взаимодействия, как показали исследования последних лет, могут осуществляться следующими механизмами: синаптической передачей мессенджера; гормональным механизмом посредством циркулирующих гормонов; паракринным механизмом, т.е. без поступления гормона в кровь, а только в межклеточную жидкость; аутокринным механизмом, т.е. выходом гормона из клетки в межклеточную жидкость и взаимодействие этого гормона с мембранными рецепторами, расположенными на той же клетке. Показано, что норадреналин, соматостатин, дофамин, гонадолиберин, окситоцин, вазопрессин могут выступать в качестве гормонов и секретироваться эндокринными клетками или нейронами, а также выявляться в синапсах нервных клеток и выполнять роль нейротрансмиттеров. Другая группа гормонов – глюкагон, энкефалины, холецистокинин, производные проопиомеланокортина секретируются эндокринными клетками, выполняя гормональную функцию, а также, локализуясь в нервных окончаниях, оказывают нейротрансмиттерное действие. Причем эти два свойства выявляются и у других гормонов аденогипофиза. Тиролиберин и ВИП секретируются нейронами, но выполняют гормональную функцию, а в нервных окончаниях оказывают явное нейротрансмиттерное действие.

Влияние ЦНС на функцию гипоталамуса осуществляется не только указанными выше нервными механизмами, но также путем транспорта спинномозговой жидкостью различных гормонов, нейротрансмиттеров и других веществ (эндорфины, энкефалины, вещество Р), вырабатывающихся в различных областях ЦНС и эпифизе. В эпифизе образуются мелатонин и ряд других индолов и полипептидов, модулирующих функцию надпочечников, щитовидной и половых желез. Гормоны эпифиза высвобождаются в спинномозговую жидкость или общий кровоток и действуют различными путями. Так, мелатонин концентрируется в гипоталамусе и среднем мозге и влияет на секрецию гипофизотропных гормонов, изменяя содержание моноаминов и нейромедиаторов. Другие полипептиды эпифиза действуют на образование гипофизотропных пептидов непосредственно.

Необходимо отметить, что, помимо нейромедиаторов, в механизмах высвобождения гипофизотропных гормонов принимают обязательное участие ионы К+ и Са2+, простагландины, цАМФ и другие вещества.

ПРИНЦИП ОБРАТНОЙ СВЯЗИ В РЕГУЛЯЦИИ ГОРМОНОВ

Отечественный ученый М.М. Завадовский, изучая закономерности в регуляции деятельности эндокринных желез, впервые в 1933 г. сформулировал принцип “плюс-минус взаимодействие”, получивший в дальнейшем название “принцип обратной связи”.

Под обратной связью подразумевается система, в которой конечный продукт деятельности этой системы (например, гормон, нейротрансмиттер и другие вещества) модифицирует или видоизменяет функцию компонентов, составляющих систему, направленную на изменение количества конечного продукта (гормона) или активности системы. Жизнедеятельность всего организма является следствием функционирования многочисленных саморегулируемых систем (выделительная, сердечно-сосудистая, пищеварительная, дыхательная и др.), находящихся в свою очередь под контролем нейроэндокринно-иммунной системы. Все перечисленное представляет, таким образом, комплекс различных саморегулируемых систем, находящихся в определенной степени зависимости и “подчиненности”. Конечный результат или активность системы может модифицироваться двумя путями, а именно путем стимуляции для увеличения количества конечного продукта (гормона) или повышения активности эффекта, или путем угнетения (ингибирования) системы с целью уменьшения количества конечного продукта или активности. Первый путь модифицирования называется положительной, а второй – отрицательной обратной связью. Примером положительной обратной связи является повышение уровня гормона в крови, стимулирующее высвобождение другого гормона (повышение уровня эстрадиола в крови вызывает высвобождение ЛГ в гипофизе), а отрицательной обратной связи, когда повышенный уровень одного гормона угнетает секрецию и высвобождение другого (повышение концентрации тироидных гормонов в крови снижает секрецию ТТГ в гипофизе).

Гипоталамо-гипофизарная регуляция осуществляется механизмами, функционирующими по принципу обратной связи, в которых четко выделяются различные уровни взаимодействия (рис. 2).

Рис 2. Уровни функционирования обратной связи.

Под “длинной” цепью обратной связи подразумевается взаимодействие периферической эндокринной железы с гипофизарными и гипоталамическими центрами (не исключено, что и с супрагипоталамическими и другими областями ЦНС) посредством влияния на указанные центры изменяющейся концентрации гормонов в циркулирующей крови.

Под “короткой” цепью обратной связи понимают такое взаимодействие, когда повышение гипофизарного тропного гормона (например, АКТГ) модулирует и модифицирует секрецию и высвобождение гипофизотропного гормона (в данном случае кортиколиберина).

“Ультракороткая” цепь обратной связи – вид взаимодействия в пределах гипоталамуса, когда высвобождение одного гипофизотропного гормона влияет на процессы секреции и высвобождения другого гипофизотропного гормона. Этот вид обратной связи имеет место в любой эндокринной железе. Так, высвобождение окситоцина или вазопрессина через аксоны этих нейронов и посредством межклеточных взаимодействий (от клетки к клетке) модифицирует активность нейронов, продуцирующих эти гормоны. Другой пример, высвобождение пролактина и его диффузия в межваскулярные пространства приводит к влиянию на соседние лактотрофы с последующим угнетением секреции пролактина.

“Длинная” и “короткая” цепи обратной связи функционируют как системы “закрытого” типа, т.е. являются саморегулирующими системами. Однако они отвечают на внутренние и внешние сигналы, изменяя на короткое время принцип саморегуляции (например, при стрессе и др.). Наряду с этим на указанные системы влияют механизмы, поддерживающие биологический циркадный ритм, связанный со сменой дня и ночи. Циркадный ритм представляет собой компонент системы, регулирующий гомеостаз организма и позволяющий адаптироваться к изменяющимся условиям внешней среды. Информация о ритме день-ночь передается в ЦНС с сетчатки глаза на супрахиазматические ядра, которые вместе с эпифизом образуют центральный циркадный механизм – ”биологические часы”. Помимо механизма день-ночь, в деятельности этих “часов” принимают участие другие регуляторы (изменение температуры тела, состояние отдыха, сна и др.).

Супрахиазматическим ядрам принадлежит интегрирующая роль в поддержании биологических ритмов. Около 80% клеток супрахиазматических ядер возбуждается при действии ацетилхолина. Попытки изменить ритм деятельности ядер инфузией большого количества серотонина, дофамина, тиролиберина, вещества Р, глицина или g-аминомасляной кислоты оказались неэффективными. Однако в этой области обнаружены некоторые гормоны (вазопрессин, гонадолиберин, вещество Р), которые, несомненно, каким-то образом участвуют в механизмах поддержания биологических ритмов.

Секреция многих гормонов (АКТГ, СТГ, глюкокортикоиды и др.) подвержена на протяжении суток значительным колебаниям. На рис. 3 представлен суточный ритм секреции СТГ. Изучение циркадной секреции гормонов имеет большое клиническое значение, так как при некоторых заболеваниях (акромегалия, болезнь Иценко – Кушинга) нарушение суточного ритма секреции гормонов является важным дифференциально-диагностическим признаком, который используется в дифференциации синдромно сходной патологии.

Гипоталамическая регуляция

Гипоталамус является той областью ЦНС, которая посредством нейротрансмиттеров, гипоталамических, гипофизотропных гормонов, а также симпатической и парасимпатической частей вегетативной нервной системы интегративно регулирует функциональную активность гипофиза и периферических эндокринных желез.

ГИПОФИЗОТРОПНЫЕ ГОРМОНЫ

Известные в настоящее время гипофизотропные гормоны гипоталамуса делятся на гормоны, усиливающие (высвобождающие, рилизинг-гормоны) и угнетающие (ингибирующие) секрецию и высвобождение (выделение) соответствующих тропных гормонов передней доли гипофиза. Комиссия по биохимической номенклатуре Международного общества чистой и прикладной химии Международного биохимического общества (1974 г.) рекомендовала принять окончание “либерин” в названиях гормонов гипоталамуса, усиливающих высвобождение соответствующих тропных гормонов гипофиза (например, кортиколиберин), и окончание “статин” в названиях гормонов с ингибирующим эффектом (например, соматостатин).

Установлено существование следующих гипофизотропных гормонов: 1) гормон, высвобождающий лютеинизирующий и фолликулостимулирующий гормоны – гонадолиберин (люлиберин); 2) кортикотропин-рилизинг-гормон кортиколиберин; 3) соматотропин-рилизинг-гормон – соматолиберин; 4) гормон, угнетающий высвобождение гормона роста – соматостатин; 5) пролактин-рилизинг-гормон – пролактолиберин, функцию которого выполняют, вероятно, тиролиберин и ВИП; 6) гормон, угнетающий высвобождение пролактина – пролактостатин, роль которого выполняет дофамин; 7) тиротропин-рилизинг-гормон – тиролиберин; 8) гормон, высвобождающий меланоцитостимулирующий гормон – меланолиберин; 9) гормон, угнетающий высвобождение меланоцитостимулирующего гормона – меланостатин. Существование двух последних гормонов у человека окончательно не доказано.

Гипофизотропные гормоны секретируются нейронами, локализованными в различных областях гипоталамуса. Так, паравентрикулярное ядро гипоталамуса содержит большое количество нейронов, секретирующих тиролиберин и кортиколиберин; дугообразное (аркуатное) ядро содержит нейроны, секретирующие соматолиберин и пролактостатин (дофамин); нейроны, секретирующие соматостатин, располагаются в передней гипоталамической области, а гонадолиберин – в предоптической области. Аксоны перечисленных нейронов заканчиваются в области срединного возвышения гипоталамуса, где начинается портальная система гипофиза, c помощью которой гипоталамус сообщается с передней долей гипофиза. Перечисленные химические медиаторы (гипофизотропные гормоны, моноамины), относящиеся к малым пептидам и биогенным аминам, высвобождаются из гипоталамических нейронов в систему портального кровообращения и, достигая клеток аденогипофиза, модулируют их специфическую активность. Установлено, что нервные терминали (аксоны) нейронов гипоталамуса имеют здесь тесные контакты с первичным капиллярным сплетением, где и происходит высвобождение гипофизотропных гормонов в кровь и их транспорт портальной системой к гипофизу. Концентрация гипофизотропных гормонов в этой системе наивысшая по сравнению с их содержанием в общем кровотоке.

Кортиколиберин. Кортитропин-рилизинг-фактор был первым из гипофизотропных гормонов, который был частично охарактеризован еще в 1955 г., однако лишь в 1983 г. W. Vale с сотрудниками представили полную химическую и клиническую его характеристику. Интересно, что для получения 1 мг этого гормона (такое количество необходимо для химической характеристики) исследователи фракционировали 500 тысяч гипоталамусов овцы. В последующие годы кортиколиберин был выделен и из гипоталамуса свиньи, крысы, человека и других животных. Этот пептид состоит из 41 аминокислотного остатка, имеющего молекулярную массу 4758, 14 дальтон. Ген, ответственный за синтез кортиколиберина, локализуется на 8-й хромосоме. Основное количество кортиколиберина локализуется в гипоталамусе, однако он выявляется и в других отделах ЦНС, включая кору головного мозга и различные ядра, где он выполняет роль нейротрансмиттера, координируя ответ на различные стрессовые ситуации. В гипоталамусе кортиколиберин в основнм выявляется в парвоцеллюлярных нейронах паравентрикулярного ядра и нервные аксоны этих нейронов достигают срединного возвышения, где они контактируют с капиллярами портальной системы и с током крови достигают клеток аденогипофиза. Многочисленными исследованиями показано, что адреналэктомия или гипофизэктомия приводит к увеличению содержания кортиколиберина в указанных областях гипоталамуса. Изучение структуры кортиколиберина, полученного из гипоталамуса различных животных, показало, что только кортиколиберин человека и крысы имеет идентичную структуру, которая включает следующую последовательность аминокислот: Ser-Glu-Glu-Pro-Pro-Ile-Ser-Leu-Asp-Leu-Thr-Phe-His-Leu-Leu-ArgGlu-Val-Leu-Glu-Met-Ala-Arg-Ala-Glu-Gln-Leu-Ala-Gln-Gln-Ala-His-SerAsn-Arg-Lys-Leu-Met-Glu-Ile-Ile-NH2. Критическим для сохранения биологической активности гормона является наличие карбоксильного остатка. Исследованиями различных авторов установлено, что фрагмент молекулы, содержащий 15-41 аминокислотный остаток, обладает биологической активностью гормона. Как и другие нейропептиды, кортиколиберин синтезируется из прогормона, включающего 196 аминокислотных остатков. Период полураспада кортиколиберина в плазме составляет около 60 минут. Кортиколиберин селективно увеличивает высвобождение АКТГ и других гормонов, производных общего предшественника-проопиомелпнокортина (ПОМК) (см. ниже). Его влияние на усиление высвобождения АКТГ ингибируется глюкокортикоидами. При этом высокие дозы кортизола уменьшают и даже полностью прерывают его влияние на аденогипофиз. На мембранах кортикотрофов кортиколиберин комплексируется со специфическими высокоаффинными рецепторами, активирует аденилатциклазу, что приводит к повышению внутриклеточного уровня цАМФ, который в свою очередь повышает активность цАМФ-зависимых протеинкиназ. Стимуляция высвобождения АКТГ наблюдается только в присутствии Са2+. Наблюдаемое при этом увеличение уровня внутриклеточного кальция может быть результатом повышения концентрации внутриклеточного цАМФ с последующим фосфорилированием белков кальциевых каналов.

Вазопрессин также способен стимулировать высвобождение АКТГ, но для этого требуются дозы, превыщающие в тысячи раз дозы, оказывающие максимальный антидиуретический эффект. Вазопрессин и кортиколиберин оказывают синергическое влияние на секрецию АКТГ. Так, вазопрессин в 2-3 раза усиливает способность кортиколиберина высвобождать АКТГ (прямое потенцирующее действие). Проведенные исследования показали, что в нервных окончаниях срединного возвышения вазапрессин и кортиколиберин выявляются вместе, что свидетельствует о возможной их одновременной секреции при определенных условиях. Потенцирующее действие кортиколиберина на секрецию АКТГ помимо вазопрессина оказывают также адреналин и ангиотензин II. Как известно, вазопрессин осуществляет свое действие через инозитолфосфатную систему, а адреналин и ангиотензин II – через цАМФ. На мембранах клеток передней доли гипофиза выявлены высокоаффинные рецепторы к вазопрессину, которые фармакологически подразделяются на V2 (антидиуретические) и V1 (вазопрессорные) рецепторы.

Гипофизотропные нейроны, секретирующие кортиколиберин, локализуются в дугообразном, дорсомедиальном, вентромедиальном ядрах, но наибольшее их количество расположено в паравентрикулярном ядре. Аксоны этих клеток оканчиваются в области срединного возвышения, откуда через портальную систему гипофиза кортиколиберин достигает клеток аденогипофиза.Скорость биосинтеза и высвобождения кортиколиберина модулируется моноаминами. Так, адреналин, норадреналин, серотонин, ацетилхолин, глютамин, ангиотензин II, нейропептид Y и аспартамин стимулируют, а аргинин вазопрессин, g-аминомасляная кислота, вещество Р и опиоидные пептиды угнетают высвобождения кортиколиберина (схема 12). Кроме того, холецистокинин, гастринвысвобождающий пептид, предсердный натрийуретический гормон также способны стимулировать высвобождение АКТГ.

Схема 12. Контроль секреции и высво- бождение кортиколиберина.

КЛН – кортиколиберинсинтезирующий нейрон; 1 – серотонин; 2 – ацетилхолин; 3 – гамма-аминомаслянная кислота; 4 – норадреналин. Сплошные стрелки – стимулирующее влияние, пунктирные – угнетающее влияние на секрецию корти- колиберина.

Таким образом, кортиколиберин стимулирует синтез и высвобождение АКТГ посредством цАМФ и системы ФИФ2 (инозитолфосфатная система), являющейся вторичным мессенджером вазопрессина. Повышение концентрации калия деполяризует клеточную мембрану и в присутствии ионов кальция происходит высвобождение АКТГ. Это действие кортиколиберина не требует синтеза белка. Кроме того, кортиколиберин ускоряет биосинтез АКТГ de novo, и это влияние может быть угнетено пуромицином и актиномицином D

Далее:

 

Способ пользования труднорожающей женщины без применения лекарств..

Активизация спермы.

5.2.1. Предпосылки для участия врачей в полном психосоматическом уходе за больным.

медиаторов из пресинаптических окончаний.

Глава II. Развитие артериальной сети в мягкой мозговой оболочке полушарий головного мозга.

Острая лучевая болезнь.

Глава XIII Психические болезни.

 

Главная >  Публикации 


0.0029