Главная >  Публикации 

 

Откуда берутся мысли



Если историю изучения медиаторов рассказать подробно от расшифровки механизма синтеза и транспортировки до выяснения принципов использования, получится большой приключенческий роман. Здесь же придется ограничиться лишь рассказом о самом главном.

Синтез сложных молекул возможен лишь в самой нервной клетке, так как для этого требуется участие клеточного ядра. Отсюда ее продукция «течет» по шлангам отростков нервных клеток, добираясь до самых удаленных окончаний аксона, где используется большая часть доставляемых сюда веществ.

Еще лет тридцать назад никому и в голову не приходило, что древние греки были правы, предположив, что нервы представляют собою трубопроводы. В это особенно трудно поверить, зная, что в каждом нерве упаковано огромное количество тонюсеньких нервных отростков. И все-таки они действительно используются как трубы, только трубы совершенно фантастические.

Непонятно, как по такой тонюсенькой трубочке нейрону удается переправлять «грузы» одновременно в обоих направлениях, от тела клетки к ее отросткам и от отростков к телу, да еще с различной скоростью. Фактически в аксоне действуют три самостоятельные транспортные системы. Медленная гонит все содержимое аксона от тела клетки в окончания отростков со скоростью один миллиметр в сутки и используется для переноса веществ, необходимых для жизнедеятельности нервного волокна. Быстрая транспортная система переносит грузы в обоих направлениях, обеспечивая огромную скорость «перевозок» – от 10 до 20 сантиметров за 24 рабочих часа. Она снабжает нервные окончания сырьем, из которого здесь, на месте, будут синтезированы молекулы медиатора. В обратную сторону переправляется вторичное сырье – использованные в нервных окончаниях вещества.

На «складах» готовой продукции – образцовый порядок. Молекулы медиатора пакуются в специальную тару – синаптические пузырьки. Так они лучше сохраняются, огражденные от разрушительного действия ферментов. В каждом нервном окончании могут скопиться тысячи синаптических пузырьков, содержащих от 10 тысяч до 100 тысяч молекул медиатора, причем для хранения возбуждающего медиатора используются обычные шарообразные пузырьки, а молекулы тормозного медиатора упакованы в продолговатые пузырьки-пакеты.

Трудность передачи информации состоит в том, что каждая нервная клетка одетая в собственную добротную оболочку, закутанная слоями миелина – обмоткой из швановских клеток и окруженная глиальными клетками, – это маленькое самостоятельное государство. Какие бы революции здесь ни происходили, сор из избы не будет вынесен, все останется внутри клетки, пока ее двери будут надежно заперты. Чтобы передать сообщение, клетка-корреспондент должна открыть двери на нервных окончаниях своего аксона и добиться, чтобы открылись двери в мембране адресата – нервной клетки, получающей информацию.

Замки на дверях, находящихся в окончаниях аксона, отпирает пришедший сюда нервный импульс. Сейчас же распахиваются двери в синаптическую щель. За одну миллисекунду «за порог» выкатится 200–300 синаптических пузырьков. Находящиеся в них молекулы медиатора являются ключами, способными отпереть двери на фасаде соседней клетки.

Нужно сказать, что двери в нервных окончаниях аксона плотно не закрываются. И в обычном состоянии из них нет-нет да и вывалится контейнер с медиатором. В синаптическую щель в минуту попадает примерно 50–60 пузырьков. Однако находящихся в них ключей недостаточно для того, чтобы у клетки-адресата отпереть нужное количество дверей и вызвать ее возбуждение. Даже нервный импульс распахивает двери складов медиатора нервного волокна недостаточно широко. Однако в них из синаптической щели навстречу контейнерам с медиатором устремляются ионы кальция, отчего дверные створки раскрываются все шире и шире, и в конце концов обеспечат выход достаточного количества ключей.

В синаптической щели нет никаких приспособлений, помогающих ключам попасть в отверстие замков. Молекулы медиатора распространяются здесь в силу простой диффузии, и лишь немногие из них случайно находят замок, остальные бесцельно блуждают в своем тесном пространстве и очень скоро оказываются разрушенными. Вот почему ключей должно быть очень много. Однако синаптическая щель не широка, и ключи быстро достигаются ее противоположной стенки. Все же на это уходит гораздо больше времени, чем на движение возбуждения по нервному волокну. Необходимость перехода возбуждения с нейрона на нейрон приводит к замедлению распространения информации в мозгу.

Мы уже познакомились с тем, как удалось разобрать нейрон и собрать для исследования синапсы. А раз удалось извлечь из нервных клеток такую маленькую деталь, невольно направшивался вопрос, не удастся ли и синапс разобрать на составные части. Эта фантастическая программа также была выполнена. Осуществить демонтаж синапса помог змеиный яд.

Обитатели тропиков змеи крайты относятся к числу наиболее опасных. Действие их яда сходно с кураре. Токсическое вещество крайта забивает замочные скважины на синаптической мембране клетки-адресата и не дает возможности отпирать замки с помощью предназначенных для них ключей – молекул медиатора ацетилхолина. Яд формозского крайта так прочно соединяется с замком, что разделить их почти невозможно. На него не действуют даже вещества, способны растворять нервные оболочки. Разрушатся все остальные части мозговой кашицы, и только крохотные кусочки мембраны предохранит от растворения прилипшая к ним молекула яда. С помощью яда крайтов удается «надергать» из синапсов достаточное для исследования количество замков. Уже подсчитали, что на синаптической мембране, имеющей площадь около 200 миллиардов квадратных ангстрем, – 3 миллиона дверей и у каждой свой замок. Они имеют размер не больше 7–10 квадратных ангстрем, значит, все вместе не занимаются и 0,01–0,02 процента площади синаптической мембраны.

Замок представляет собой крупную белковую молекулу, вмонтированную в толщу полужидкой мембраны нейрона. На поверхность выглядывает лишь небольшая его часть – участок молекулы, несущий электрический заряд. Конфигурация замка и ключа таковы, что они, как осколки разбитого стакана, сложенные надлежащим образом, образуют единое целое и благодаря электрическим зарядам крепко удерживаются друг возле друга. Молекула медиатора, соединяясь с белковой молекулой замка, заставляет последнюю изменить свою форму, при этом в стенке мембраны открывается пора, позволяющая ионам, находящимся в синаптической щели, проникнуть в нейрон или ионам, находящимся внутри нейрона, вылиться наружу. В зависимости от того, для каких ионов медиатор отпирает двери и в каком направлении они движутся, нервная клетка или возбуждается или, напротив, затормаживается.

Одним из важнейших медиаторов является ацетилхолин. Нет на нашей планете таких существ, нервная система которых пользуется химическими синапсами, но не имеет ацетилхолина. Возможно, он был первым медиатором, созданным природой. Его широкое использование связано, видимо, с тем, что построен он достаточно просто, легко синтезируется и организм не испытывает недостатка в необходимом для этого сырье.

Приход нервного импульса в нервное окончание дает возможность выбросить в синаптическую щель 5 миллионов молекул ацетилхолина, однако по прямому назачению будет использовано не больше четверти, но и этого вполне достаточно, чтобы вызвать возбуждение нейрона-адресата.

Молекула ацетилхолина представляет собою цепочку, состоящую из атомов кислорода, азота и 5 атомов углерода. К атому азота, несущему положительный заряд, крепятся три метильные группы (атом углерода с прикрепленными к нему тремя атомами водорода). Эта массивная головка молекулы выполняет функцию бородки ключа. Она попадает в специальное углубление замка и удерживается его отрицательным зарядом.

Об устройстве замка удалось кое-что узнать, попробовав открыть его различными отмычками. Эти исследования подтвердили важность электрических зарядов ключей. Молекулу ацетилхолина легко лишить положительного заряда, если атом азота заменить углеродом. Такая отмычка способна отпирать замок, но действует в 12 тысяч раз слабее, чем настоящий ацетилхолин.

Использование грубо сделанных отмычек подтвердило, что отверстие замка по размеру точно соответствует бородке ключа. Если любую из метильных групп головки ацетилхолина заменить на более крупную этильную, состоящую из двух атомов углерода и пяти атомов водорода, такая молекула в 3–5 раз хуже отпирает ионные двери. Причина понятна – ключ стал велик и с трудом входит в замочную скважину. При замене двух или всех трех метильных групп сильно увеличенный ключ уже не помещается в замочной скважине и мембранных дверей не отпирает.

Точно так же можно испортить ключ, уменьшив у молекулы ацетилхолина размер ее головки. Легко заметить, что все три ее метильные группы могут быть заменены атомами водорода. Замена на водород одной метильной группы снижает результативность медиатора в 50 раз, двух – в 500, а всех трех – в 40 тысяч раз. Ключ легко входит в замочную скважину, но головка стала слишком маленькой, он «хлябает», проворачиваясь в замке, и не может его отпереть.

Ацетилхолин оказался ключом с двумя бородками. Второй бородкой является атом кислорода, несущий отрицательный заряд. Расстояние между бородками известно: атомы кислорода и азота разделяет два атома углерода и они удалены друг от друга на 4,7 ангстрема. Молекулу легко удлинить, вставив в цепочку дополнительно один, два или больше атомов углерода, и это полностью испортит ключ. Такая молекула не войдет в замочную скважину, и двери не откроются.

Зная размеры ключа, подобрать к замку отмычку нетрудно. Атом азота в молекуле ацетилхолина можно заменить любым другим, лишь бы он нес положительный заряд и оказался отделен от кислорода двумя атомами углерода.

Медиков особенно заинтересовали отмычки, которые, как и кураре, способны надежно выводить из строя замок. Это нужно хирургам, чтобы на время сложнейших операций полностью обездвижить человека или устранить судорожные сокращения мышц.

Неожиданно очень эффективными оказались крупные молекулы сходных с ацетилхолином веществ. Особенно значительный эффект давали молекулы с двумя атомами азота на концах, если между ними было 10 или 16 атомов углерода. Именно столько – не больше и не меньше. Не сразу удалось разгадать механизм их действия. А разгадка была проста. Двери, а следовательно и замки, не разбросаны на мембране как попало, а сгруппированы по четыре. Если замочные скважины соединить прямыми линиями – получится квадрат. У длинной отмычки каждый из двух атомов азота, как бородка ключа, попадает в отдельную замочную скважину. Этим объясняется эффективность отмычек. В отличие от молекул кураре отмычка выводит из строя сразу два замка. Меньший из ключей попадает в замки, лежащие по любой из сторон квадрата, а более длинный, чтобы попать обеими бородками в замочные скважины, должен лечь по его диагонали. Зная размер ключей, нетрудно выяснить и размеры квадрата. В использованых веществах между атомами азота расстояния 14 и 20 ангстрем. Следовательно, замки находятся в углах правильного квадрата. В этом каждый легко убедится сам. Из геометрии мы знаем, что квадрат гипотенузы равен сумме квадратов двух катетов. Проверим цифрами высказанное предположение о расположении замков:

20І ? 14І + 14І (двадцать в квадрате приблизительно равно четырнадцать в квадрате плюс четырнадцать в квадрате) Как видите, ошибка ничтожна.

В головном мозгу человека огромную роль играет тормозной медиатор ГАМК (его полное название гаммааминомасляная кислота). Считают, что не менее трети синапсов головного и спинного мозга человека используют этот медиатор. В отличие от ацетилхолина, обеспечивающего поступление в клетку положительно заряженного иона натрия, понижающего отрицательный внутриклеточный заряд, ГАМК открывает ворота для отрицательно заряженного иона хлора, что усиливает ее отрицательный заряд и препятствует возникновению возбуждения.

Механизм действия многих медиаторов значительно сложнее, чем ацетилхолина и ГАМКа. Например, норадреналин и дофамин, также весьма распространенные медиаторы, действуют на клетку с помощью посредников. На одном нейроне могут быть синапсы, использующие разные медиаторы – тормозные и возбуждающие. Они могут усиливать эффект друг друга или блокировать его. Характер взаимодействия различных синапсов определяет конечный эффект: возбудится ли нейрон или покой его не будет нарушен, донесет ли аксон свои сигналы до следующих нейронов или они будут перехвачены и блокированы тормозными воздействиями.

Физиологам уже многое удалось узнать о работе нейрона. Кажется, что в общих чертах мы понимаем, как он выполняет свою основную функцию – обработку информации, но совершенно очевидно, что дальнейшие подробности о механизмах его интимной деятельности будут не менее интересны. Нейрон еще не раз удивит нас невообразимой сложностью своего поведения.

Откуда берутся мыслиЧерный ящик

Борьба с материалистическим подходом к изучению мозга всегда велась под знаменами церковников. Россия в этом отношении не была исключением. В начале шестидесятых годов XIX века редактор самого прогрессивного отечественного журнала «Современник» Н.А. Некрасов обратился к выдающемуся русскому физиологу И.М. Сеченову с просьбой написать статью о насущных вопросах естествознания. Сеченов охотно откликнулся. Он уже давно обдумывал основные положения будущего трактата «Рефлексы головного мозга». Журнальный вариант этой работы Сеченов озаглавил так: «Попытка свести способы происхождения психических явлений на физиологические основы». Редакция журнала, опасаясь преследований цензуры, изменила название, но это не спасло положения. Номер «Современника» со статьей Сеченова был конфискован. Оговорив ряд условий, в том числе требование сократить или коренным образом изменить заключительный раздел статьи, цензура разрешила ее публикацию лишь в специальном медицинском журнале.

Несколькими годами позже И.М. Сеченов попытался издать свой труд отдельной книгой, и тогда разразилась настоящая буря. Когда книга была напечатана, совет Главного управления по делам печати вынес постановление о наложении на нее ареста и возбуждении судебного преследования против автора. Петербургский цензурный комитет сообщал прокурору, что «сочинение Сеченова объясняет психическую деятельность головного мозга… Эта материалистическая теория… разрушая моральные основы общества в земной жизни, тем самым уничтожает религиозный догмат жизни будущей…». Как видите, чиновники царской России недалеко ушли от деятелей средневековой инквизиции.

После покушения Д.В. Каракозова на царя Александра II чрезвычайная следственная комиссия, поощряемая министром внутренних дел, организовала третий тур наступления на автора труда «Рефлексы головного мозга». Что же вызвало такой гнев у царских министров и охранников? Может быть, Сеченов в своей книге призывал к свержению царского режима или хотя бы критиковал его? Нет, книга посвящена работе мозга. Никаких политических проблем автор в ней не затрагивал, но зато доказал, что тайну психической жизни можно раскрыть методами естествознания, так как в ее основе лежат реально существующие физиологические процессы. Сама мысль, по мнению Сеченова, – всего лишь сложный рефлекс и, как всякий рефлекс, может быть изучена физиологами.

«Рефлексы головного мозга» ознаменовали начало нового этапа в изучении мозга. Сеченов первым из ученых сделал попытку представить психические процессы чисто физиологически. Он внес весомый вклад в изучение нервной системы, подводя экспериментальную базу под свои теоретические построения, но не располагал еще достаточным числом надежно проверенных фактов для построения законченного учения о функциях головного мозга. Честь создания физиологии высших психических функций выпала на долю другого выдающегося русского ученого – И.П. Павлова.

К изучению мозга Павлов пришел не сразу. В пору своего становления как ученого он и не дерзал мечтать о подобных исследованиях. В тот период наука располагала настолько скудными сведениями о физиологии центральной нервной системы, что мысли просто не за что было зацепиться, чтобы строить столь смелые прожекты. К необходимости познать мозг Павлова привели собственные исследования в далеких, казалось бы, областях физиологии, властно потребовав изучения функций мозга, и подсказали единственно возможный для того времени метод.

И.П. Павлов внес весомый вклад во многие разделы физиологии, но из исследований, выполненных в первую половину его жизни, наибольшую известность приобрело систематическое изучение главных пищеварительных желез. За открытия в этой области он первым среди отечественных исследователей был удостоен Нобелевской премии – высшей в те годы награды для ученого.

Успех в изучении пищеварения принесла разработанная им методика создания фистул – отверстий, дающих доступ в пищеварительные полости, позволяющих наблюдать за деятельностью желез, не нарушая ни кровоснабжения, ни нервного аппарата изучаемого органа. Эта методика позволила детально изучить деятельность основных пищеварительных желез.

В стройную систему физиологических представлений не укладывалось только одно явление, получившее название психической секреции. Оно состоит в том, что выделение пищеварительных соков, особенно слюны, может возникнуть у собаки еще до того, как ей в рот попадет пища, лишь под влиянием ее запаха, вида, бренчания кормушки, из которой обычно кормят животное, или шагов служителя, идущего забрать собаку в виварий, где ее уже ждет обед.

Психическая секреция представлялась загадочным явлением. Пока ее механизм оставался невыясненным, нельзя было считать изучение физиологии пищеварительных желез завершенным. Павлову необходимо было объяснить наблюдаемое явление, выяснить, каким образом, в силу каких причин шаги служителя, которого еще и не видно, вызывают у собаки слюнотечение. У некоторых сотрудников лаборатории эти явления не вызывали недоумения. В каждой лаборатории, видимо, бывает хотя бы один человек, которому все понятно. Они объясняли психическую секрецию тем, что собака чувствует запах пищи, видит ее или слышит, что за ней идет служитель, и надеется, что ее сейчас покормят.

В глубине души Павлов был согласен с таким объяснением. В течение ряда лет он сам развивал мысли о главенстве психического фактора в приспособлении пищеварительных желез к внешним воздействиям, но использовать в физиологической лаборатории психологические термины считал неправомерным и теперь категорически запретил сотрудникам произносить такие слова, как «собака захотела», «подумала», «решила», или объяснять ее поведение какими-то внутренними психическими состояниями. Он даже ввел денежный штраф за употребление психологических терминов и безжалостно штрафовал своих сотрудников. Будучи физиологом, Павлов хотел им и остаться даже при изучении психики.

Далеко не все сотрудники Павлова поняли и приняли новый подход своего учителя к «психическим» реакциям пищеварительных желез. И за пределами его лаборатории ученые не сразу заметили, что, продолжая экспериментировать с пищеварительными железами, он изучал не физиологию пищеварения, а функции мозга.

Когда Павлов приехал в Стокгольм получать медаль нобелевского лауреата, ему шел 56-й год – возраст, в котором ученые той эпохи обычно задумывались о пенсии, начинали собираться на покой. Иван Петрович был не таким. Именно в это время он задумал исследование, на которое не хватило бы жизни и молодого ученого, исследование, на которое не отваживался до него никто – изучение физиологии высших функций головного мозга. К 1903 желание изучить мозг стало совершенно очевидным, недаром его доклад, сделанный на очередном Физиологическом конгрессе в Мадриде, назывался «Экспериментальная психология и психопатология на животных». Правда, доклад Павлова не был понят, так необычно было то, о чем он говорил с трибуны. Сочли, что тема доклада всего лишь чудачество маститого ученого, желание прослыть оригиналом

Далее:

 

С чего начать?.

Правила управления с помощью стимулов.

Глава V. Мужская работа я не хочу. Чтобы ты был несчастлив!.

Здравоохранение.

Внутренняя среда организма.

Вопросы медицинской деонтологии при профессиональных заболеваниях.

Анкилостомидозы (ancylostomIDoses).

 

Главная >  Публикации 


0.0009