Главная >  Публикации 

 

Нейрон в «тисках»



Кроме насосов в стенке нейрона существуют каналы для пропуска ионов натрия, калия и кальция. Они также построены из белковых молекул. Каналы устроены так, что они могут открываться и закрываться. Как это происходит, пока выяснить не удалось, но особенно удивляться здесь нечему. Белковые молекулы способны менять свою конфигурацию, например, сжиматься. На этом, кстати, основана работа мышц.

Каналы устроены так, что преимущественно пропускают ионы какого-то одного типа, например натрия или калия. Свойство поистине удивительное, если иметь в виду, что калиевый канал, свободно пропускающий ионы калия, на каждые сто его ионов позволяет просочиться лишь семи значительно более мелким ионам натрия. Видимо, они устроены так, что к их стенкам «прилипают» ионы любых веществ, не предназначенных для прохождения по данному каналу.

«Двери» каналов снабжены надежными запорами. Как устроены эти замки, пока недостаточно ясно, но ключи к ним известны. Одни из них отпираются и запираются электрическим ключом, для других ключом служат молекулы особых веществ – медиаторов. Рассказ о химических ключах еще впереди. Сейчас нам важно знать лишь о том, что происходит с нейроном, когда широко открываются каналы в его оболочке.

Благодаря тому что внутри нейрона иная концентрация ионов натрия и калия, чем снаружи, а каждый ион несет положительный или отрицательный заряд, внутренняя среда нервной клетки оказывается на 70 милливольт заряжена более отрицательно, чем ее поверхность. Отрицательный заряд, называемый потенциалом покоя, сохраняется до тех пор, пока нервная клетка бездействует.

Но вот нервный импульс одного нейрона добежал по его аксону до дендритов или даже до поверхности тела другого, находящегося в состоянии покоя. Химический ключ открывает в его оболочке натриевые каналы, и натрий бурными многочисленными потоками устремляется внутрь клетки. Благодаря проникновению в нейрон огромного количества положительно заряженных ионов натрия отрицательный внутриклеточный потенциал сменяется на положительный.

Натриевые каналы работают одно мгновение и тотчас закрываются, а им на смену открываются калиевые каналы, и теперь калий начинает бурно покидать нейрон. Ионы калия тоже заряжены положительно. Покидая нейрон, они уменьшают его заряд, и тот снова становится отрицательным, достигая обычной величины минус 70 милливольт.

Хотя в том месте клеточной мембраны, где только что были открыты натриевые и калиевые каналы, все очень скоро приходит в норму, дело этим не ограничивается. Снижение и изменение знака внутриклеточного потенциала является ключом, отпирающим и запирающим ионные каналы на соседних участках клеточной мембраны. Если в основании главного нервного отростка – аксона внутриклеточный заряд уменьшается, тотчас в непосредственной близости от этого места распахиваются двери натриевых каналов, и там почти мгновенно начинает падать величина электрического потенциала, отпирая двери в соседнем участке нервного волокна. Так отпирая и запирая ионные каналы в оболочке нервного волокна, проносится по аксону волна изменения потенциала – нервный импульс, пока не добежит до синапсов. А там он может перескочить и на соседний нейрон, но об этом разговор будет особый.

Интересно, что стремительный бег по нервному волокну биоэлектрического потенциала, когда ему ничто не мешает, совершается медленнее, чем скачки с препятствиями. Только у низших животных нервные волокна бывают «голыми». В мозгу человека большинство аксонов, кроме клеточной мембраны, имеют дополнительную электроизоляцию. Эту функцию выполняют большие плоские швановские клетки, создающие для него несколько слоев надежной изоляции, накрученные, как изоляционная лента, на нервное волокно.

Муфты швановских клеток, надетые на аксон, не соприкасаются друг с другом. Между ними остаются узкие щели – перехваты Ранвье. Только здесь нервное волокно непосредственно соприкасается с внеклеточной жидкостью. Поэтому в нервной системе человека волна распространяющегося нервного импульса не бежит плавно, а движется скачками от одного перехвата к другому, что весьма ускоряет процесс распространения импульса.

Таким образом, одежда нейрона – его оболочка не только обеспечивает целостность и самостоятельность нервной клетки. Она ответственна за возникновение в нем возбуждения, за распространение этого возбуждения по отросткам нейрона и, как мы увидим дальше, имеет прямое отношение к переходу возбуждения с одного нейрона на другой. Роль одежды нейрона столь велика, что изучению нейронных мембран сейчас посвящается больше исследований, чем любым другим структурам нервной клетки.

Нейрон в «тисках»

Нейрон-крохотуля скрыт в глубинах мозговой ткани. В живом мозгу его не увидишь, не найдешь. Как же удалось узнать о его деятельности такие подробности? Казалось бы, что для исследования нужно «вырубить» нервную клетку из толщи мозга, извлечь наружу, зажать для устойчивости в «тиски». Только теперь можно начать исследование: ввести в нее микроэлектрод или микропипетку и попробовать выяснить, что происходит у нее внутри, что проникает туда через стенку и что выделяется наружу. Фантастическая картина! Но как иначе приступить к изучению нейрона? За такую ювелирную работу не взялся бы даже знаменитый лесковский Левша. И действительно, еще недавно ученые ни о чем подобном и мечтать не смели. А почему бы и нет? – задали вопрос киевские ученые Института физиологии, из лаборатории академика П.Г. Костюка, – и приступили к исследованию.

Первой задачей, вставшей на пути ученых, стала необходимость осуществить демонтаж мозга. Его нужно было разобрать на отдельные нейроны, но сделать более деликатно, чем это делали химики, чтобы сохранить нервные клетки живыми.

За большой и сложный мозг млекопитающих киевляне не взялись. Для начала был выбран объект попроще – нервный ганглий улитки, вроде тех, что живут в каждом самом маленьком пруду. Выбор моллюсков в качестве объекта исследования был сделан по целому ряду причин. Главная заключалась в том, что многие нейроны нервной системы улиток имеют «гигантские» размеры. Они такие большие, что видны простым глазом, без микроскопа или увеличительного стекла. Кроме того, они лежат на поверхности нервного ганглия, и поэтому добраться до них совсем не трудно. А что до того, что вместо нейрона человеческого мозга для исследования взят нейрон весьма примитивного существа, так ученые уже имели возможность неоднократно убедиться, что работа нейронов высокоразвитых и низших животных не имеет существенных различий.

Неожиданно оказалось, что разобрать нервный ганглий улитки на отдельные клетки совсем не трудно. Ганглий удалось растворить, воспользовавшись давнишним изобретением природы – пищеварительным ферментом пепсином, с помощью которого у нас в желудке перерабатывается мясная пища. Оказалось возможным подобрать такую концентрацию фермента, при которой в мозгу улитки растворяется все, в том числе связи между клетками, а мембрана нейрона не повреждается. Нейрон – очень важная деталь мозга, неудивительно, что она одета в гораздо более прочную, чем другие клетки организма, оболочку, способную уберечь ее от многих неприятностей.

Все же извлечь из мозга нейрон в абсолютно не поврежденном виде пока не удается. Невозможно выплести из ткани ганглия тонюсенькие отростки нервной клетки. Они легко рвутся. Ученых очень беспокоил вопрос – как залечить или заделать дырки в местах обрыва отростков, чтобы вещество клетки не выливалось наружу, как льется вода из крана, если оставить его открытым? К счастью, опасения оказались необоснованными. Нервные клетки снабженым удивительным механизмом самовосстановления. Чуть только произошел обрыв отростка, оболочка на конце культи начинает сжиматься. Мгновенье-другое, и рана закрылась. Еще две-три секунды, и клетка полностью здорова. Можно приступать к изучению ее деятельности.

Чудеса на этом не кончились. В Киеве для нервной клетки удалось соорудить даже «тиски». Их конструкция предельно проста. В центре тонкой металлической пластинки высверливается микроскопический конусообразный канал. Его размер подбирается таким образом, чтобы верхнее, входное отверстие было чуть больше нейрона, а нижнее, выходное – чуть меньше. Готовой пластинкой перегораживают крохотный сосуд. В его верхнюю часть наливают специальный раствор, чтобы нервная клетка могла чувствовать себя нормально, и опускают туда нейрон, извлеченный из мозга улитки. Жидкость просачивается сквозь отверствие в перегородке – и в конце концов засосет в канал нейрон. Если его стенки предварительно смазать специальным клеем, а в арсенале ученых нашелся и он, то нервная клетка, попав в отверствие, прилипает к его стенкам и прочно закрепляется. Зажатый в «тисках» нейрон – прекрасный объект для исследования. В крупные клетки моллюсков удается одновременно ввести до пяти стеклянных электродов. Нейроны удивительно выносливы. Пронзенные несколькими электродами, они много часов проживут в питательном растворе и будут нормально работать.

Нейрон слишком сложный объект. Даже извлеченный из мозга и прочно закрепленный, пронзенный несколькими электродами, он продолжает хранить свои тайны. Исследование пошло бы быстрее, если бы и нейрон удалось разобрать на составные части. В первую очередь исследователям хотелось получить кусочек живой, полноценной, надежно закрепленной мембраны, чтобы ее было удобно исследовать.

Удалось осуществить и этот фантастический проект. Для изготовления препарата используют зажатый в «тисках» нейрон. Мы уже неоднократно сталкивались с тем, насколько прочна и устойчива его оболочка. Действительно прочна, но есть немало способов, на первый взгляд совсем безобидных, позволяющих ее повредить. Кальций – один из важных компонентов жизнедеятельности нейрона. Обработка нервной клетки раствором, не содержащим кальция, приводит к появлению в его оболочке множества ультрамикроскопических отверстий. В результате она превращается в мелкое сито, легко отсеивающее мелкие ионы натрия, калия, кальция, хлора. Значительно более крупные молекулы белков и других органических веществ пройти через эти отверстия не могут. Подготовленная таким образом клетка сохраняет все, что ей необходимо для жизни, хорошо себя чувствует и нормально функционирует.

Подготовить такой опыт не трудно. В нейрон, зажатый в «тисках», вводят нужное количество электродов, а мембрану, выступающую в нижний сосуд, обрабатывают бескальциевым раствором, превращая ее в сито. Теперь можно управлять составом солей внутри нейрона. Нервная клетка так мала, а отверстий в ее оболочке возникает так много, что если быстро сменить раствор в нижней части сосуда, так же быстро, почти мгновенно, изменится солевой состав и внутри клетки. Теперь, по желанию экспериментаторов, можно было создавать в протоплазме нейрона любую концентрацию ионов натрия, калия, кальция и хлора. В руках ученых фактически оказался кусочек оболочки нервной клетки, но кусочек вполне полноценный, сохранивший собственную протоплазму и ядро, по-прежнему окруженный заботами собственного «комбината бытовых услуг» и поддержкой собственного энергетического центра. Этот уникальный препарат и позволил изучить работу «электростанции» нейрона, выяснить, как мембрана генерирует ионные насосы и какова их роль в распространении нервного импульса. Как и окружающая Вселенная, микрокосмос нашего мозга оказался вполне доступным для изучения.

Посредник

Еще лет пятьдесят назад размеры нашей страны, тем более всей планеты, подавляли своей необъятностью. Сотрудники Аэрофлота справедливо утверждают, что развитие авиации сильно сократило расстояния. Для общения народов оно теперь не помеха. Трудность в другом – в языковом барьере. Сейчас на земле существует более двух с половиной тысяч языков – явное излишество для ставшей тесноватой планеты.

Многоязычие создает колоссальные трудности. Особенно страдают ученые, которым необходимо оперативно знакомиться с новой информацией, публикуемой их коллегами на своих родных языках. Чтобы как-то выйти из этого положения, европейские ученые раньше использовали латынь. Мертвый язык, на котором не говорил ни один народ, постепенно потерял свое значение. Время от времени делались попытки создать искусственный международный язык. Наибольшее распространение получил эсперанто.

Ни один из искусственных языков пока не завоевал всеобщего признания, и языковой барьер до сих пор вносит в работу международных организаций колоссальные трудности. Этот барьер пытаются преодолеть разными путями. Особенно трудно малым странам. Хотя датский язык принят в руководящих органах Европейского экономического сообщества, на международной арене датчанам редко приходится сталкиваться с людьми, владеющими их родным языком. Неудивительно, что продолжаются настойчивые попытки «перепрыгнуть» через барьер. Дело дошло до того, что датская газета «Политикен» выступила инициатором широкой дискуссии о переходе датчан на… английский язык.

Перед клетками мозга стоят те же проблемы – расстояние и взаимопонимание. Первая проблема, как мы уже видели, решается просто. Длинные отростки нервных клеток – аксоны дотягиваются до любых районов мозга. Сложнее со взаимопониманием. Два нейрона – два самостоятельных государства. Природа должна была изобрести механизм, позволяющий одному нейрону, получившему заслуживающую внимания информацию, не только довести ее до сведения других нейронов мозга, но и добиться того, чтобы они на нее отреагировали.

Немало усилий пришлось затратить ученым, чтобы выяснить как общаются между собой нейроны. Уже давно было известно, что по отросткам нервных клеток, как по телеграфным проводам, бегут биоэлектрические импульсы. Физиологи подозревали, что этот импульс, дойдя до синапса – места, где отросток одной нервной клетки касается отростка или тела другой нервной клетки, вызывает в соседнем нейроне ответную электрическую реакцию. Такой путь перехода возбуждения с нейрона на нейрон действительно существует у примитивных животных, и соответствующие синапсы даже получили название электрических. Однако у человека дело обстоит значительно сложнее.

«Выведать» механизм общения нейронов, как ни странно, помогли американские индейцы. Захват и разграбление великих индейских империй, начатый Эрнандо Кортесом и Франсиско Писарро, протекал бы значительно быстрей, если бы у индейцев не было их страшного смертоносного оружия – отравленных ядом стрел. Особенно оно досаждало завоевателям, пытавшимся проникнуть в покрытые девственными тропическими лесами районы континента. Крохотной царапины, сделанной отравленной стрелой, оказывалось достаточно, чтобы убить человека или лошадь. Возвращаясь в Европу, конкистадоры вместе с награбленными богатствами привозили домой страшные рассказы о воинственных индейцах, а иногда в их сундуках оказывалось и само оружие коренных жителей Америки.

Стрельный яд, который использовали индейцы, называется кураре. Его получали из коры, корней и молодых побегов ядовитых тропических растений. Им смазывались наконечники боевых стрел. Через некоторое время сироп твердел, и стрела была готова. Действие яда сказывалось быстро. Сначала наступал паралич шейной мускулатуры, потом отказывали конечности. Несколькими минутами позже прекращалась работа дыхательной мускулатуры и раненый умирал от удушья.

Вряд ли в те времена кто-нибудь всерьез задумывался над механизмом действия яда. Людям казалось, что само слово «яд» исчерпывающе объясняет причину смерти: отравился, и все тут. Первым над способностью отравленных стрел почти мгновенно отнимать жизнь серьезно задумался выдающийся французский физиолог Клод Бернар. Он был очень удивлен, обнаружив, что у только что погибших от кураре животных раздражение нервов не вызывает сокращения мышц. Это казалось чрезвычайно странным, так как обычно мышца, иссеченная вместе с нервом у убитого животного, длительное время способна отвечать сокращением на его раздражение. Тщательно изучив необычное поведение нервно-мышечного препарата, ученый с удивлением убедился в том, что у отравленного кураре животного мышцы не теряли способности сокращаться, а нервы – проводить возбуждение, то есть передавать распоряжения нервных клеток. Почему же нервный импульс, добежав до вполне полноценной, способной к сокращению мышцы, тем не менее не вызывает ее сокращения? Это могло означать только одно: распоряжения нейронов, посылаемые мышцам, почему-то до них не доходят, видимо застревая в синапсах.

Клоду Бернару ничего достоверно выяснить не удалось, но он высказал догадку, впоследствии получившую экспериментальное подтверждение, что синапс работает как телеграфный аппарат, только, вместо того чтобы печатать распоряжения на бумажной ленте, издает для мышц химические приказы.

С догадками оперировать гораздо проще, чем с фактами. Предположение Бернара о способах передачи мышцам распоряжений нервных клеток перенесли и на общение нейронов. Но как подступиться к такому исследованию? Как уже говорилось, внутри синапсов оболочки двух контактирующих клеток друг с другом непосредственно не соприкасаются. Если химические «приказы» действительно отправляются, то скорее всего именно сюда, в узкую щель между оболочками контактирующих клеток. Но как извлечь оттуда это гипотетическое вещество?

Совершенно очевидно, что в каких бы мизерных дозах ни выделялся химический приказ, часть этого вещества в конце концов должна попасть в кровь. Значит, получить небольшую порцию передатчика не так уж сложно. Конечно, целый большой мозг для задуманного исследования не годился. Для эксперимента выбрали один из ганглиев вегетативной нервной системы, имеющихся у всех высших животных.

Исследование было организовано элементарно просто. Нервный стволик, идущий к симпатическому нервному ганглию, раздражали ритмическими ударами электрического тока. В ответ на каждый электрический импульс в синапсах ганглия должны были «издаваться» химические приказы. Чтобы ознакомиться с ними, нужно было собрать оттекающую от ганглия кровь, а еще лучше – пропустить по сосудам ганглия солевой раствор. В нем легче, чем в крови, нащупать новое, постороннее вещество. Но как его там обнаружить, ведь оно должно находиться там в ультрамикроскопических количествах? И как доказать, что в растворе находятся именно химические приказы, а не какие-то другие примеси?

Чтобы ответить на этот вопрос, не пришлось создавать специальный чувствительный прибор. Его удалось найти в самом организме. Оказалось, что, если солевым раствором, пропущенным по сосудам ганглия, подействовать на мышцу, она ответит сокращением. Некоторые химические приказы, предназначенные для общения нервных клеток, понятны и мышцам. Таким образом, существование химических приказов было доказано, а вещества, используемые для передачи информации от клетки к клетке, получили название медиаторов. Сейчас известно более 30 веществ, которые подозреваются в способности передавать информацию нейронов, и, надо думать, выявлены еще далеко не все.

Зачем понадобилась мозгу такая уйма медиаторов? Ответить на этот вопрос сейчас вряд ли кто-нибудь сможет. Видимо, чтобы не происходило путаницы. Раз утечка в кровь некоторого количества медиаторов возможна, значит, они могут попасть на оболочку любого нейрона и вызвать в нем возбуждение, хотя данный приказ ему вовсе не предназначался. Возможно, поэтому в каждой внутримозговой системе работает собственный медиатор, и общение происходит на собственном «национальном» языке. Это предохраняет от возникновения путаницы и сбоев в работе мозга, от вмешательства соседних нейронов в работу изолированных мозговых систем.

В химическом отношении медиаторы являются или моноаминами, то есть веществами, в состав которых входит одна аминогруппа – атом азота с двумя атомами водорода, или аминокислотами, тоже непременно имеющими в своем составе аминогруппу. Общим для всех этих веществ является то, что молекулы их невелики и атом азота, входящий в аминогруппу, несет положительный заряд. Интересно, что один и тот же медиатор может использоваться и в тормозных и в возбудительных синапсах

Далее:

 

7. Метод.

Глава 9. Рефлекс «зеленого света».

Овен.

Общие наставления.

2. Династия хань.

Способы и средства лечения..

Обманчивость диагноза.

 

Главная >  Публикации 


0.0006