Главная >  Публикации 

 

Эритроциты разрушают сосуды



По Петраковичу, в каждой клетке (в митохондриях), в том числе в эритроците (в гемоглобине), имеется около 400 миллионов субъединиц, объединяющих 4 атома железа с переменной валентностью Fe 2+ = Fe 3+. Эти стабильные структуры или, как их называет Г. Н. Петракович, "электромагнитики", присущие только живой природе, принимают непосредственное участие в свободно-радикальном окислении.

Электронные "перескоки" между двух- и трехвалентными атомами железа создают сверхвысокочастотное электромагнит-ное поле митохондрии, клетки, являющееся источником энергозатратных и энергообменных процессов. Вот как описывает-ся автором этот процесс: "Итак, цепи постоянного тока - "цепи переноса электронов" - в митохондрии нет. Что тогда есть?

А есть стремительное, с огромной скоростью, равной скорости смены Г валентности в атоме железа, входящего в состав электромагнитика, передвижение - "перескок" выхваченного из субстрата ненасыщенной жирной кислоты электрона и "собственного" в пределах одного и того же электромагнитика. Каждое такое перемещение электрона порождает электри-ческий ток с образованием вокруг него, по законам физики, электромагнитного поля. Направление движения электронов в таком электромагнитике непредсказуемо, поэтому они могут порождать своими перемещениями только переменный вихревой электрический ток и, соответственно, переменное высокочастотное вихревое электромагнитное поле.

Феномен протонов (положительно заряженных атомов водорода), вылетающих из митохондрий в пространство клетки, биохимикам известен давно. Однако, ученые не находили адекватного места этим частицам в обменных процессах. По Петраковичу, протоны наряду с электронами являются для клеток важнейшими энергонесущими и энергопередающими частицами.

"Таким образом, речь идет о принципиально новом, никем ранее не представленном взгляде на получение и передачу энергии в живой клетке - речь идет об ионизирующем протонном излучении в живой клетке, как способе передачи энергии биологического окисления, из митохондрии в цитоплазму".

Второе и третье положения раскрывают тайну конвейера жизни, т. е. за счет каких процессов обеспечивается побуждение к активной работе клеток органов и тканей. Этот конвейер включает в себя: дыхание-горение, электронное возбуждение эритроцитов крови, наработку эритроцитами энергетического потенциала в период их движения по кровеносным сосудам, сброс эритроцитами электронного возбуждения клетке-мишени.

В легких осуществляется не переход кислорода в кровь. Здесь углеводороды тканей взаимодействуют с кислородом воз-духа в химической реакции, протекающей по механизму горения. При горении, особенно при горении в виде вспышки, мгнове-нно рождающей огромное количество электронов, происходит электромагнитное возбуждение, энергии которого вполне достаточно для возбуждения свободно-радикального окисления ненасыщенных жирных кислот мембран эритроцитов.

Г. Н. Петракович поставил вопрос о принципиально новой концепции энергопроизводства, энергообмена и клеточного взаимодействия в живых организмах. Его открытие определило важнейшее направление в исследовании живой материи и имеет самые интересные перспективы.

Однако мы не знаем количественные и качественные параметры работы клеток при энергообеспечении организма. При свободнорадикальном окислении высвобождается значительно больше энергии (около 100 ккал/моль), чем при биохимических процессах с использованием АТФ (6-12 ккал/моль). Куда же исчезает энергия? Или почему все же человеку не хватает энергии?

Новая концепция дыхания и клеточного энергообеспечения получила свое понимание и развитие после открытия Эндогенного Дыхания.

Итак, есть внешнее дыхание, которым пользуются все люди, и есть Эндогенное Дыхание, которым начали пользоваться отдельные люди. Чтобы разобраться в каждом дыхании, нужно рассмотреть работу клеток, начиная от альвеол легких, где осуществляется электронная зарядка отработанной крови, до самой дальней клетки - мишени, которая ожидает свою порцию живительной "электронной" энергии. Но, прежде чем отправиться в путешествие, предлагаем ознакомиться с главным действующим лицом процессов энергопроизводства и энергообмена в организме -эритроцитом.

Эритроцит - наиважнейшая клетка крови и организма: "Скажи мне, какие у тебя эритроциты, и я скажу тебе, кто ты". Пожалуй, в такой интерпретации больше смысла, чем в известной поговорке. Специалисты на основании информации об эритроцитах могут получить больше сведений, чем с помощью известных диагностических средств и методов.

Эритроциты - одни из самых многочисленных клеток организма. Из общего количества клеток (около 2 х 1014) примерно 2,5 х 1013 приходится на эритроциты. Это неудивительно. Ведь эритроциты должны обеспечить безостановочное инициирование к работе всех клеток органов и тканей. Благодаря эритроцитам осуществляются обмен веществ, вывод из организма углекислого газа, продуктов обмена, а также другие функции.

По форме обычно эритроцит представляет двояковогнутый диск-дискоцит, диаметром 7-8 мкм, наибольшая толщина - 2,4 мкм, минимальная - 1 мкм. Сухое вещество эритроцита содержит около 95% гемоглобина, и только 5% приходится на долю других веществ.

Средняя продолжительность жизни эритроцита составляет 120 дней. Клеточная мембрана эритроцита четырехслойная, средние два слоя состоят из липидов, которые содержат белковые включения в виде плавающих глобулярных тел. Наружные слои белковой природы.

Эритроциты обладают достаточной гибкостью и эластичностью, что легко позволяет им проходить через сосуды, имеющие меньший диаметр.

Эритроциты, как и другие клетки, имеют отрицательные поверхностные заряды. Среди других клеток крови (лейкоцитов, тромбоцитов) эритроциты обладают самым большим поверхностным зарядом. Известно, что частицы, имеющие одинако-вые заряды, отталкиваются. Поэтому, благодаря эритроцитам, составляющим главную массу форменных элементов крови, обеспечивается практически безвязкостное, подобно шарикам ртути, движение крови по сосудам.

Перед ознакомлением с механизмом энергообмена хочу привлечь внимание к мощности и надежности организменного энергетического конвейера. У человека с массой 70 кг в состоянии покоя каждую минуту совершают круговорот около 3 кг эритроцитов. И этот процесс никогда не останавливается.

Итак, чтобы приблизиться к истине, мы предлагаем всем совершить еще два путешествия: одно при внешнем, другое при Эндогенном Дыхании. Однако, для ясности цели, необходимо определиться в акцентах. Итак, внешнее дыхание ведет к старению и деградации тканей, а Эндогенное Дыхание вызывает противоположные эффекты. Между дыханием и клетками тканей существует одна среда - кровь в лице эритроцитов, которые несут энергию. Нетрудно догадаться, что при внешнем дыхании эритроциты вызывают процессы, приводящие к повреждению и деградации тканей, а при Эндогенном Дыхании эритроциты производят противоположный эффект. Значит, существует два противоположных варианта возбуждения эритроцитов в легких. Вот с этим мы и должны разобраться в путешествиях. Важно усвоить, сколько эритроцитов получают в легких энергетическое возбуждение и каков характер этого возбуждения.

Заранее должны оговориться, что полученные длительными исследованиями новые знания о дыхании приводят к необходимости ввести некоторые коррективы в механизм производства и обмена энергии гипотезы Петраковича. Это учтено в излагаемой далее теории Эндогенного Дыхания.

Эритроциты разрушают сосуды

Представления о новой технологии станут предметными, если заглянуть в легочную альвеолу и капилляры, которые сетью покрывают ее наружную поверхность. Именно здесь, согласно традиционным представлениям, осуществляется газообмен между кровью и легкими. Именно здесь, как еще сегодня учат, кровь получает кислород, чтобы принести его жаждущим клеткам тканей. Но Г. Н. Петракович показал, что все не так. И сегодня имеются десятки доказательств его правоты.

На рисунке 2 поз.1 показана полость альвеолы (поперечник около 260 микрон), внутренняя поверхность которой образована альвеолярными клетками - альвеолоцитами. Поверх альвеолоцитов альвеола выстилается тончайшей жировой пленкой - сурфактантом. Имеющий общую с альвеолой стенку легочный капилляр образован активными клетками -эндотелиоцитами.

Что же происходит в капилляре при обычном дыхании? В капилляр, в узкую щель между альвеолоцитами внедряется воздушный пузырек в сурфактантной оболочке. Внедрение обеспечивается за счет подсасывающего эффекта левого предсердия. Можно сказать, что такое подсасывание имеет массовый характер. И еще раз можно поразиться гениальности творца. Достаточная плотность в крови эритроцитов и высокая эластичность капилляров обеспечивают плотный контакт сурфактантной пленки пузырька с поверхностью эритроцита и эндотелиоцитами. Поверхность эритроцита имеет огромный по сравнению с эндотелиоцитом отрицательный электронный потенциал. Возникающий между клетками разряд мгновенно сжигает сурфактантную пленку. В качестве окислителя используется кислород, находящийся в воздушном пузырьке. Но энергию электронного разряда также получают и эндотелиоциты и сурфактант, а от него как по проводам и альвеолоциты. Этот фактор имеет важнейшее значение, поскольку в альвеолы поступает венозная (98-99%), выжатая в энергетическом смысле кровь. Энергию вспышки прежде всего получает эритроцит, но часть ее также получают клеточные структуры на границе горения.

Обратите внимание на размер воздушного пузырька. Не кажется ли он Вам большим? Вспомните забавы детства. Как быстро проваливается в рот и заполняет всю его полость резиновый пузырь? То же создается в капилляре, когда возника-ет присасывающее давление. При вспышке выделяется не только тепло, но и выбрасываются электроны. Таким образом эритроцит получает мощное электронное возбуждение по всей поверхности диска, прилегаемой к пузырьку. Почти полови-на мембраны эритроцита охвачена интенсивным процессом свободно-радикального окисления ненасыщенных жирных кис-лот. Эритроцит быстро нарабатывает электронный заряд и кислород, который накапливается под сурфактантной оболоч-кой. Возбуждение, инициированное вспышкой, в дальнейшем будет называться "горячим", как и эритроцит, имеющий или продуцирующий такое возбуждение. Через несколько секунд эритроцит достигает сердца, артерий. Потенциал клетки приближается к максимуму, и она готова к мощному сбросу энергии. А разумность "Природы"? Может быть, целесообраз-ность как раз в неразумности.

Главным фактором разумности поведения эритроцита в кровеносном русле является величина отрицательного поверх-ностного заряда. Он отталкивается от таких же энергетических эритроцитов - соседей, от активно работающих клеток эндотелия сосудов и тяготеет к неактивным, т. е. низкоэнергетическим неработающим клеткам, имеющим минимальный поверхностный заряд. А теперь представьте себе кровь, которая толчками захватывается предсердием, желудочком сердца и так же энергично выбрасывается в аорту. Скорость здесь достигает 2 м/сек! Уже в области аорты многие эритро-циты созрели для передачи энергии. Повороты, сужение, деление артерии, большая скорость крови, эритроцитам тесно в потоке, ведь они занимают 35-40% от объема крови - столкновения со стенками и между собой неизбежны. Сегодня имеет-ся множество фактов, позволяющих утверждать, что наиболее интенсивно "горячие" эритроциты осуществляют энергети-ческое возбуждение клеток (вспышкой) в сердце (его полостях и коронарных сосудах), в аорте, крупных артериях, прежде всего несущих кровь головному мозгу, почкам, нижним конечностям, кишечнику. Чем ближе к сердцу расположена артерия, чем больше ее сечение и удельный кровоток, тем интенсивнее возбуждаются клетки сосудистой стенки. Это процесс "горячего" сброса энергии за счет вспышки сурфактанта эритроцита в его же собственном кислороде показан на рис. 2 поз. 2а. К сожалению, при внешнем дыхании процесс "горячего" инициирования мощного энерговозбуждения клеток носит массо-вый характер. И первично возбужденные эритроциты до капилляров многих органов и тканей, как правило, не доходят, а "отрабатывают" в артериях. В зону доступности первичных эритроцитов входит сердце, мозг и близлежащие от сердца ткани. Указанные зоны, как показывает практика, являются наиболее уязвимыми. Это подтверждает, что непосредствен-ное воздействие "горячих" эритроцитов является опасным. Тем не менее можно считать, что большинство "горячих" эрит-роцитов отрабатывает до входа в капиллярное русло. От аорты, диаметр которой составляет около 2 см, до капилляра, средний диаметр которого 7,5 мкм, существует множественный каскад артерий с понижающимися сечениями сосудов. Клетки эндотелия артерий в основном не испытывают энергетического дефицита. Независимо от этого энергонасыщен-ные эритроциты осуществляют их энерговозбуждение.

"Горячий" сброс энергии эндотелиоцитам сосудистой стенки приводит к высокой интенсивности свободнорадикального окисления липидов мембран клеток, включая и мембраны митохондрий. Доля последних в общем энергетическом балансе, реализуемом за счет свободнорадикального окисления, значительна. Эндотелиоциты за счет свободнорадикального окисления обеспечивают себя и расположенные по соседству клетки энергией, в свою очередь побуждая их к реакциям свободнорадикального окисления. Передача эндотелиоцитами энергии соседним клеткам повышает нагрузку на их мембранный комплекс.

Познакомившись с тем, как осуществляется энерговозбуждение эритроцитов в легких и как осуществляется "горячий" сброс энергии, мы не выяснили, в чем причина энергетического дефицита. Если мы знаем количество сжигаемого кислоро-да, размер пузырьков и количество функционирующих в кровеносном русле эритроцитов, то это не трудно определить. В состоянии покоя "горячее" возбуждение получает около 2-4 % эритроцитов, т. е. только один из 25-50. У ребенка первого месяца жизни энергетическое возбуждение практически получает каждый второй эритроцит.

Ну а 2-4%, много это или мало? Это означает, что каждый эндотелиоцит капиллярного русла получает энергетическое возбуждение через 0,3-0,5 минуты, т. е. в организме энерговозбуждается только 1-2% клеток и около 90% клеток практически не функционируют. Эритроциты основную часть энергии сбрасывают в артериях, а недостаток энергообеспечения клеток капилляров выражается в повышенном энергодефиците и недостаточном общем обмене тканей. Взрослого человека возможно бы устроил энергетический уровень, соответствующий месячному ребенку. Однако, мы должны заявить, что при внешнем дыхании механизмы энергообеспечения организма и взрослого и новорожденного являются разрушительными. Это прежде всего относится к артериям. Клеткам их стенок много энергии не требуется. Но непрерывно осуществляемые процессы "горячего" возбуждения инициируют возобновление новых и новых процессов сво-боднорадикального окисления, создающих напряжение в обеспечении целостности мембранных структур. Целостность клетки интимы артерии может быть обеспечена, если будут непрерывно возобновляться расходуемые ненасыщенные жир-ные кислоты, и если интенсивность процесса свободнорадикального окисления ограничена определенным пределом. Но в реальной жизни такие условия часто не выполняются. Повреждение мембран и других структур клеток сосудистой стенки - один из универсальных патологических процессов, характерных для организмов с внешним дыханием. Пусковой механизм повреждения сосудистой стенки являлся тайной за семью печатями. Но эта тайна открылась, как только стала применяться теория Эндогенного Дыхания. На рис. 2 поз. 2а показано "горячее" энерговозбуждение эритроцитом эндотелиальной клетки артерии. Электрический разряд сжигает суфрактант эритроцита в его же кислороде. Мощное электронное облучение мембраны клетки вызывает интенсивное свободнорадикальное окисление ненасыщенных жирных кислот. И целостность сосудистой стенки зависит от частоты попадания в зону реакции "горячих" эритроцитов. Меньше всего таких эрит-роцитов в состоянии покоя. При стрессах и физических нагрузках количество "горячих" эритроцитов возрастает в 10-20 раз.

Выбранный нами пример не случаен. Ведь поражения сосудистой стенки наиболее выражены в аорте, крупных артериях и в местах бифуркации (деления) артерий. Ученые до сих пор ищут причину в гемодинамическом ударе. Но логика процесса и полученные экспериментальные данные доказывают реальность нового механизма первичного поражения сосудистой стенки.

Таким образом, легкие покидает около 2-4% энергопотенциальных "горячих" эритроцитов и 96-97% индифферентных, т. е. неспособных к энергетическому возбуждению клеток. При этом основная масса эритроцитов отдает энергию в артериях. За счет чего же обеспечивается энергетика клеток капиллярного русла? На пути от легких до капилляров тканей возникает множество условий для появления эритроцитов, способных передавать клеткам малые порции энергии. Как уже сказано, эритроциты движутся в плотном потоке и с довольно значительной скоростью. При касании стенок сосуда (см. рис. 2 поз. 26), когда заряд не достиг величины, позволяющей воспламенить сурфактант, эритроцит сбрасывает избыточный элект-ронный заряд. После создания эритроцитом нового заряда за счет свободнорадикального окисления процесс может повториться Несколько раз сбросив энергию в артериях, эритроцит также способен обеспечить "холодное" возбуждение клеток капилляра. В таком же положении могут оказаться эритроциты, которые в пути подели-лись энергией с индифферентным соседом. Но такую же роль могут выполнять эритроциты, которые получили десяток электронов при контакте с энергонасыщенным эритроцитом, например, при движении через сердце или в бурном потоке в аорте, артерии. Интересно, что получив небольшое электронное "вливание", эритроцит за счет свободно-радикального окисления собственных ненасыщенных жирных кислот способен неоднократно осуществить "холодное" энерговозбуж-дение клеток. "Холодное" инициирование имеет основное значение в обеспечении работы капиллярного русла.

На рис. 2 поз. 2 в показано полевое сверхвысокочастотное энерговозбуждение сосудистой клетки. Этот вид возбуждения наиболее значителен в зонах с высокой энергетической плотностью, например, в сердце, особенно в состоянии нагрузки. С переходом на эндогенное дыхание количество таких зон в организме резко возрастает.

Об атеросклеротических изменениях в интиме сосудов сегодня известно каждому человеку. Несмотря на многочисленные исследования процессов атеросклероза, многие стороны этого неприятного явления остаются неясными.

Традиционный вариант транспортировки кислорода тканям не разрешает конфликта между массой противоречивых фактов. Самое очевидное противоречие мы наблюдаем в кровеносном русле. Мощное атеросклеротическое повреждение аорты (практически у всех людей, начиная с детского возраста), снижающееся по мере сужения сосудов и почти прекращаю-щееся в капиллярах. Если бы степень поражения сосудистой стенки была равномерной, включая и капилляры, то смерть в 15-20 лет могла бы стать обычной, а до 50 лет никто бы не доживал.

Теория Эндогенного Дыхания позволила увидеть реальный механизм энергетического механизма, который неотделим от практических наблюдений. Если в кровеносные сосуды поступают эритроциты, несущие мощное "горячее" возбуждение эндотелиоцитам, за счет неконтролируемых процессов свободно-радикального окисления там осуществляется поврежде-ние интимы со всеми вытекающими последствиями. Это происходит в основном в артериях. При "холодном" возбуждении эндотелиоцитов повреждение интимы не происходит. Это относится преимущественно к капиллярам. Повреждение капил-ляров (случаи патологий и заболеваний в расчет не принимаются) возможно в основном при повышенных нагрузках на дыха-тельную и сердечно-сосудистую системы, стрессах.

Нам осталось познакомиться с тем, какое влияние оказывает дыхание на другие клетки крови.

Других клеток крови - лейкоцитов, тромбоцитов - на несколько порядков меньше, чем эритроцитов. При движении клеток в артериях возникает достаточно условий для энергетических контактов между ними. Роль донора остается за эритроци-том. Из нашей теории логически вытекает, что энергетика, состояние обменных процессов и функциональная активность лейкоцитов и тромбоцитов определяются прежде всего энергетическим состоянием эритроцитов. Чем больше в кровенос-ном русле находится энергетически активных эритроцитов, тем эффективнее функционируют остальные клетки. В проведенном эксперименте нами доказано, что активность клеток иммунной системы всецело зависит от энергетики эритроцитов

Далее:

 

§ 12. Лечение солнцем.

Глава III Проблема деятельности в психологии.

Коралл.

Кожные заболевания.

Шаги к прекрасному здоровью - через правильное питание:.

Литература.

7. Промывание мозгов.

 

Главная >  Публикации 


0.0009