Главная >  Публикации 

 

Гормональная регуляция обмена веществ



Комплексы (фосфотирозиновые пептиды – SH2 домены) определяют селективность передачи гормонального сигнала. Конечный эффект передачи гормонального сигнала зависит от двух реакций – фосфорилирования и дефосфорилирования. Первая реакция находится под контролем различных тирозинкиназ, вторая – фосфотирозиновых фосфатаз. К настоящему времени идентифицировано более 10 трансмембранных фосфотирозиновых фосфатаз, которые подразделяются на 2 группы: а) большие трансмембранные белки/тендемные домены и б) небольшие внутриклеточные ферменты с одним каталитическим доменом.

Внутриклеточные фрагменты фосфотирозиновых фосфатаз отличаются большим разнообразием. Считается, что функция SH2 доменовых фосфотирозиновых фосфатаз (I и II типа) заключается в уменьшении сигнала посредством дефосфорилирования фосфорилирующих участков на рецепторной тирозинкиназе или усилении сигнала через связывание тирозинфосфорилирующих сигнальных белков на одном или обоих доменах SH2, а также передаче сигнала посредством взаимодействия одного белка SH2 с другим его белком или инактивирование процессом дефосфорилирования тирозинфосфорилированных вторичных мессенджерных молекул, таких, как фосфолипаза С-g или src-тирозинкиназа.

У некоторых гормонов передача гормонального сигнала осуществляется путем фосфорилирования остатков аминокислоты тирозина, а также серина или треонина. Характерным в этом плане является рецептор к инсулину, в котором может происходить фосфорилирование как тирозина, так и серина, причем фосфорилирование серина сопровождается снижением биологического эффекта инсулина. Функциональная значимость одновременного фосфорилирования нескольких аминокислотных остатков рецепторной тирозинкиназы не совсем понятна. Однако этим достигается модулирование гормонального сигнала, который схематически относят ко второму уровню рецепторных сигнальных механизмов. Этот уровень характеризуется активированием нескольких белковых киназ и фосфатаз (таких, как протеинкиназа С, цАМФ-зависимая протеинкиназа, цГМФ-зависимая протеинкиназа, кальмодулинзависимая протеинкиназа и др.), осуществляющих фосфорилирование или дефосфорилирование сериновых, тирозиновых или треониновых остатков, что вызывает соответствующие конформационные изменения, необходимые для проявления биологической активности.

Следует отметить, что такие ферменты, как фосфорилаза, киназа, казеиновая киназа II, ацетил-СоА карбоксилазная киназа, триглицеридная липаза, гликогенфосфорилаза, белковая фосфатаза I, АТФ цитратлиаза активируются путем процесса фосфорилирования, а гликогенсинтаза, пируватдегидрогеназа и пируваткиназа активируются процессом дефосфорилирования.

Третий уровень регуляторных сигнальных механизмов в действии гормонов характеризуется соответствующим ответом на клеточном уровне и проявляется изменением метаболизма, биосинтеза, секреции, роста или дифференцировки. Это включает процессы транспорта различных веществ через клеточную мембрану, синтез белков, стимуляцию рибосомальной трансляции, активирование микроворсинчатой тубулярной системы и транслокацию секреторных гранул к мембране клетки. Так, активирование транспорта аминокислот, глюкозы через клеточную мембрану осуществляется соответствующими белками-транспортерами через 5-15 минут после начала действия таких гормонов, как СТГ и инсулин. Различают 5 белков-транспортеров для аминокислот и 7 – для глюкозы, из которых 2 относятся к натрийглюкозным симпортерам или котранспортерам.

Вторичные мессенджеры гормонов влияют на экспрессию генов, модифицируя процессы транскрипции. Так, цАМФ регулирует скорость транскрипции ряда генов, ответственных за синтез гормонов. Это действие опосредуется цАМФ-ответным элементом активирующего белка (CREB). Последний белок (CREB) комплексируется со специфическими участками ДНК, являясь общим транскрипционным фактором.

Многие гормоны, взаимодействующие с рецепторами, расположенными на плазматической мембране, после образования гормоно-рецепторного комплекса подвергаются процессу интернализации, или эндоцитозу, т.е. транслокации, или переносу гормоно-рецепторного комплекса внутрь клетки. Этот процесс происходит в структурах, называемых “покрытые ямки”, расположенных на внутренней поверхности клеточной мембраны, выстланной белком клатрином. Агрегированные таким образом гормоно-рецепторные комплексы, которые локализуются в “покрытых ямках”, затем интернализируются путем инвагинации мембраны клетки (механизм очень напоминает процесс фагоцитоза), превращаясь в пузырьки (эндосомы или рецептосомы), а последние транслоцируются внутрь клетки.

Во время транслокации эндосома подвергается процессу ацидофикации (подобно тому, что происходит в лизосомах), результатом чего может быть деградация лиганды (гормона) или диссоциация гормоно-рецепторного комплекса. В последнем случае высвободившийся рецептор возвращается на клеточную мембрану, где он повторно взаимодействует с гормоном. Процесс погружения рецептора вместе с гормоном внутрь клетки и возврат рецептора на мембрану клетки называется процессом рециклирования рецептора. В период функционирования рецептора (период полураспада рецептора составляет от нескольких до 24 часов и более) он успевает осуществить от 50 до 150 таких “челночных” циклов. Процесс эндоцитоза является составной или дополнительной частью рецепторного сигнального механизма в действии гормонов.

Помимо этого, с помощью процесса интернализации осуществляется деградация белковых гормонов (в лизосомах) и клеточная десенситизация (снижение клеточной чувствительности к гормону) путем уменьшения количества рецепторов на клеточной мембране. Установлено, что судьба гормоно-рецепторного комплекса после процесса эндоцитоза различна. У большинства гормонов (ФСГ, ЛГ, хорионический гонадотропин, инсулин, ИФР 1 и 2, глюкагон, соматостатин, эритропоэтин, ВИП, липопротеиды низкой плотности) эндосомы внутри клетки подвергаются диссоциации. Освободившийся рецептор возвращается на мембрану клетки, а гормон подвергается процессу деградации в лизосомальном аппарате клетки.

У других гормонов (СТГ, интерлейкин-2, эпидермальный, нервный и тромбоцитарный факторы роста) после диссоциации эндосом рецептор и соответствующий гормон подвергаются процессу деградации в лизосомах.

Некоторые гормоны (трансферин, маннозо-6-фосфат, содержащие белки, и незначительная часть инсулина, СТГ в некоторых тканях-мишенях) после диссоциации эндосом возвращаются, как и их рецепторы, на клеточную мембрану. Несмотря на то, что у перечисленных гормонов имеет место процесс интернализации, нет единого мнения о непосредственном внутриклеточном действии белкового гормона или его гормоно-рецепторного комплекса.

Рецепторы к гормонам коры надпочечников, половым гормонам, кальцитриолу, ретиноивой кислоте, тироидным гормонам локализованы внутриклеточно. Перечисленные гормоны липофильны, транспортируются белками крови, имеют длительный период полураспада и их действие опосредуется гормоно-рецепторным комплексом, который, связываясь со специфическими областями ДНК, активирует или инактивирует специфические гены.

Связывание гормона с рецептором приводит к изменениям физико-химических свойств последнего, и этот процесс называется активацией или трансформацией рецептора. Изучение трансформации рецепторов in vitro показало, что температурный режим, наличие гепарина, АТФ и других компонентов в инкубационной среде изменяют скорость этого процесса.

Нетрансформированные рецепторы являются белком с молекулярной массой 90 кДа, который идентичен стрессовому или белку температурного шока с той же молекулярной массой (M. Catell и соавт., 1985). Последний белок встречается в a- и b-изоформах, которые кодируются различными генами. Аналогичная ситуация наблюдается и в отношении стероидных гормонов.

Помимо стрессового белка с мол. м. 90 кДа, в нетрансформированном рецепторе выявлен белок с мол. м. 59 кДа (M. Lebean и соавт., 1992), названный иммунофилином, который непосредственно не связан с рецептором стероидных гормонов, но образует комплексы с белком мол. м. 90 кДа. Функция белка иммунофилина недостаточно ясна, хотя его роль в регуляции функции рецептора стероидных гормонов доказана, так как он связывает иммуносупрессивные вещества (например, рапамицин и FK 506).

Стероидные гормоны транспортируются в крови в связанном с белками состоянии и лишь незначительная их часть находится в свободной форме. Гормон, находящийся в свободной форме, способен взаимодействовать с мембраной клетки и проходить через нее в цитоплазму, где связывается с цитоплазматическим рецептором, который отличается высокой специфичностью. Например, из гепатоцитов выделены рецепторные белки, связывающие только глюкокортикоидные гормоны или эстрогены. В настоящее время идентифицированы рецепторы к эстрадиолу, андрогенам, прогестерону, глюкокортикоидам, минералокортикоидам, витамину Д, тироидным гормонам, а также к ретиноивой кислоте и некоторым другим соединениям (эдиксоновый рецептор, диоксиновый рецептор, пероксисомный пролиферативный активаторный рецептор и дополнительный рецептор Х к ретиноивой кислоте). Концентрация рецепторов в соответствующих тканях-мишенях составляет 103 до 5•104 на клетку.

Рецепторы стероидных гормонов имеют 4 домена: аминотерминальный домен, имеющий значительные различия у рецепторов к перечисленным гормонам и состоящий из 100-600 аминокислотных остатков; ДНК-связывающий домен, состоящий примерно из 70 аминокислотных остатков; гормоносвязывающий домен, включающий около 250 аминокислот, и карбоксилтерминальный домен. Как отмечено, аминотерминальный домен имеет наибольшие различия как по форме, так и по аминокислотной последовательности. Он состоит из 100-600 аминокислот и наименьшие его размеры выявлены в рецепторе тироидных гормонов, а наибольшие – в рецепторе глюкокортикоидных гормонов. Этот домен определяет особенности рецепторного ответа и у большинства видов он характеризуется высокой степенью фосфорилирования, хотя нет прямой корреляции между степенью фосфорилирования и биологическим ответом.

ДНК-связывающий домен характеризуется 3 интронами, два из которых имеют так называемые “цинковые пальцы”, или структуры с содержанием ионов цинка с 4 цистеиновыми мостиками.”Цинковые пальцы” участвуют в специфическом связывании гормона с ДНК. На ДНК-связывающем домене имеется небольшая область для специфического связывания ядерных рецепторов и называемая “гормоноотвечающие элементы”, которая модулирует начало транскрипции. Эта область локализуется внутри другого фрагмента, состоящего из 250 нуклеотидов, ответственного за инициацию транскрипции. ДНК-связывающий домен обладает наибольшим постоянством структуры среди всех внутриклеточных рецепторов.

Гормоносвязывающий домен участвует в связывании гормона, а также в процессах димеризации и регуляции функции других доменов. Он непосредственно примыкает к ДНК-связывающему домену.

Карбоксилтерминальный домен также участвует в процессах гетеродимеризации, взаимодействует с различными транскриптационными факторами, включая проксимальные промоторы белков.

Наряду с этим имеются данные, что стероиды вначале связываются специфическими белками мембраны клетки, которые транспортируют их к цитоплазматическому рецептору или, минуя его, непосредственно к рецепторам ядра. Цитоплазматический рецептор состоит из двух субъединиц. В ядре клетки субъединица А, взаимодействуя с ДНК, триггирует (запускает) процесс транскрипции, а субъединица B связывается с негистоновыми белками. Эффект действия стероидных гормонов проявляется не сразу, а спустя определенное время, которое необходимо для образования РНК и последующего синтеза специфического белка.

Тироидные гормоны (тироксин-Т4 и трийодтиронин-Т3), как и стероидные, легко диффундируют через липидную клеточную мембрану и связываются внутриклеточными белками. По другим данным, тироидные гормоны взаимодействуют сначала с рецептором на плазматической мембране, где комплексируются с белками, образуя так называемый внутриклеточный пул тироидных гормонов. Биологическое действие в основном осуществляется Т3, в то время как Т4 дейодируется, превращаясь в Т3, который связывается с цитоплазматическим рецептором. Если стероидцитоплазматический комплекс транслоцируется в ядро клетки, то тироидцитоплазматический комплекс сначала диссоциирует и Т3 непосредственно связывается рецепторами ядра, обладающими к нему высокой аффинностью. Кроме того, высокоаффинные рецепторы к Т3 обнаруживаются и в митохондриях. Считается, что калоригенное действие тироидных гормонов осуществляется в митохондриях посредством генерации новой АТФ, для образования которой используется аденозиндифосфат (АДФ).

Тироидные гормоны регулируют синтез белка на уровне транскрипции и это их действие, обнаруживаемое через 12-24 часа, может быть блокировано введением ингибиторов синтеза РНК. Помимо внутриклеточного действия, тироидные гормоны стимулируют транспорт глюкозы и аминокислот через клеточную мембрану, непосредственно влияя на активность некоторых локализованных в ней ферментов.

Таким образом, специфическое действие гормона проявляется лишь после его комплексирования с соответствующим рецептором. В результате процессов по распознаванию, комплексированию и активированию рецептора последний генерирует ряд вторичных мессенджеров, которые вызывают последовательную цепь пострецепторных взаимодействий, заканчивающихся проявлением специфического биологического эффекта гормона.

Отсюда следует, что биологическое действие гормона зависит не только от его содержания в крови, но и от количества и функционального состояния рецепторов, а также от уровня функционирования пострецепторного механизма.

Количество клеточных рецепторов, как и других компонентов клетки, постоянно изменяется, отражая процессы их синтеза и деградации. Основная роль в регуляции количества рецепторов принадлежит гормонам. Имеется обратная зависимость между уровнем гормонов в межклеточной жидкости и количеством рецепторов. Так, например, концентрация гормона в крови и межклеточной жидкости очень низкая и составляет 1014-109 М, что значительно ниже, чем концентрация аминокислот и других различных пептидов (105-103 М). Количество рецепторов выше и составляет 1010-108 М, причем на плазматической мембране их около 1014-1010 М, а внутриклеточный уровень вторичных мессенджеров несколько выше – 108-106 М. Абсолютное количество рецепторных мест на мембране клетки составляет от нескольких сотен до 100 000.

Многочисленные исследования показали, что рецепторы обладают характерным свойством усиливать действие гормона не только описанными механизмами, но и посредством так называемого “нелинейного связывания”. Характерна еще одна особенность, которая заключается в том, что наибольший гормональный эффект не означает наибольшего связывания гормона рецепторами. Так, например, максимальная стимуляция инсулином транспорта глюкозы в адипоциты наблюдается при связывании гормоном лишь 2% инсулиновых рецепторов (J. Gliemann и соавт., 1975). Такие же взаимоотношения установлены для АКТГ, гонадотропинов и других гормонов (M.L. Dufau и соавт., 1988). Это объясняется двумя феноменами: ”нелинейным связыванием” и наличием так называемых “резервных рецепторов”. Так или иначе, но амплификация, или усиление действия гормона, являющееся следствием этих двух феноменов, выполняет важную физиологическую роль в процессах биологического действия гормона в норме и при различных патологических состояниях. Так, например, при гиперинсулинизме и ожирении на 50-60% снижается количество инсулиновых рецепторов, локализованных на гепатоцитах, адипоцитах, тимоцитах, моноцитах, и, наоборот, инсулиндефицитные состояния у животных сопровождаются увеличением количества рецепторов к инсулину. Наряду с количеством рецепторов к инсулину изменяется и их аффинность, т.е. способность комплексироваться с инсулином, а также изменяется трансдукция (передача) гормонального сигнала внутри рецептора. Таким образом, изменение чувствительности органов и тканей к гормонам осуществляется посредством механизмов обратной связи (down regulation). Для состояний, сопровождающихся высокой концентрацией гормона в крови, характерно уменьшение количества рецепторов, что клинически проявляется в виде резистентности к данному гормону.

Некоторые гормоны могут влиять на количество не только “собственных” рецепторов, но и рецепторов к другому гормону. Так, прогестерон уменьшает, а эстрогены увеличивают количество рецепторов одновременно и к эстрогенам, и к прогестерону.

Снижение чувствительности к гормону может быть обусловлено следующими механизмами: 1) уменьшением аффинности рецептора вследствие влияния других гормонов и гормонорецепторных комплексов; 2) снижением количества функционирующих рецепторов в результате их интернализации или высвобождения из мембраны во внеклеточное пространство; 3) инактивацией рецептора вследствие конформационных изменений; 4) разрушением рецепторов путем повышения активности протеаз или деградацией гормоно-рецепторного комплекса под влиянием ферментов лизосом; 5) угнетением синтеза новых рецепторов.

Для каждого вида гормонов имеются агонисты и антагонисты. Последние представляют собой вещества, которые способны конкурентно связывать рецептор к гормону, снижая или полностью блокируя его биологический эффект. Агонисты, наоборот, комплексируясь с соответствующим рецептором, усиливают действие гормона или полностью имитируют его присутствие, причем иногда период полураспада агониста в сотни и более раз превышает время деградации естественного гормона, а, следовательно, в течение этого времени проявляется биологический эффект, что естественно используется в клинических целях. Так, например, агонистами глюкокортикоидов являются дексаметазон, кортикостерон, альдостерон, а частичными агонистами – 11b-гидроксипрогестерон, 17a-гидроксипрогестерон, прогестерон, 21-деоксикортизол, а их антагонистами – тестостерон, 19-нортестостерон, 17-эстрадиол. К неактивным стероидам в отношении рецепторов к глюкокортикоидам относятся 11a-гидроксипрогестерон, тетрагидрокортизол, андростендион, 11a-, 17a-метилтестостерон. Эти взаимоотношения учитывают не только в эксперименте при уточнении действия гормонов, но и в клинической практике.

Гормональная регуляция обмена веществ

Углеводный обмен. Глюкоза наряду с жирами и белками является источником энергии в организме. Запасы энергии в организме в виде гликогена (углеводы) невелики по сравнению с запасом энергии, представленной в виде жиров. Так, количество гликогена в организме человека весом 70 кг составляет 480 г (400 г – гликоген мышц и 80 г – гликоген печени), что эквивалентно 1920 ккал (320 ккал-гликоген печени и 1600 – гликоген мышц). Количество циркулирующей глюкозы в крови составляет всего 20 г (80 ккал).

В организме человека и животных глюкоза, абсорбированная в желудочно-кишечном тракте, поступает по системе воротной вены в печень. Транспорт глюкозы через слизистую оболочку кишечника осуществляется с помощью белкового натрий-глюкозного транспортера или симпортера, который имеет молекулярную массу 55 кДа, включает в себя 664 аминокислоты и ген, кодирующий этот белок-транспортер, локализуется на 22-й хромосоме. Связывание ионов натрия и глюкозы уравновешивается соответствующими конформационными изменениями внутренней поверхности мембраны, где количество связанных ионов натрия небольшое, и глюкоза высвобождается за счет уменьшения аффинности белков к глюкозе даже в том случае, если ее концентрация в межклеточной жидкости относительно высокая. Поступившая из кишечника глюкоза далее превращается в гликоген-полимер глюкозы, молекулярная масса которого исчисляется несколькими сотнями тысяч, тогда как молекулярная масса глюкоза равна 180 кДа.

Гликоген мышц представляет собой скопления, состоящие из отдельных частичек с молекулярной массой 2.107. В печени содержатся как отдельные, так и агрегированные частицы гликогена, их общая масса более 109, в отдельных частицах на 1 г полисахарида приходится 1,1 г воды. Кроме того, в них определяются ферменты, необходимые для синтеза и распада гликогена. Гликоген выявляется почти во всех тканях, но в основном он сохраняется, как указано выше, в качестве депо энергии в печени и мышцах. Количество его в печени подвержено большим колебаниям и зависит от диеты, а содержание гликогена в мышцах находится в прямой зависимости от физической активности индивидуума. В печени человека содержится около 400 ммоль (65 г) глюкозы на 1 кг ткани, в скелетных мышцах-85 ммоль (14 г) на 1 кг массы мышц. Это количество практически не изменяется при голодании, ночью или после приема пищи, богатой углеводами, но снижается до 1 ммоль на 1 кг после работы в течение 1-2 часов. Несмотря на то, что мышцы содержат меньше гликогена на 1кг массы ткани по сравнению с печенью, основное депо гликогена в организме находится в мышцах. У мужчины массой тела 70 кг на долю мышц приходится 28 кг, печени – всего 1,6 кг, следовательно, в печени содержится 0,6 моль, а в мышцах – 2,4 моль глюкозы

Далее:

 

Лечение.

Уксуснокислые бактерии.

Язвенная болезнь двенадцатиперстной кишки.

Разглаживание.

Рак крови (злокачественное белокровие).

Цирроз печени.

Глава 11. Содействие эмансипации: невротическая патология.

 

Главная >  Публикации 


0.0016