Главная >  Публикации 

 

7.4. Кооперация иммунокомпетентных клеток



Бурная выработка JgG происходит уже при повторном попадании антигена в организм, обеспечивая нейтрализацию бактериальных токсинов и вирусов. Период полураспада 24 дня.

JgM — самые крупные антитела, вырабатывающиеся на первичное введение в организм антигена. Они отличаются выраженной авидностью и образуют прочные соединения с антигенами, несущими множественные детерминанты, — эти антитела вызывают агглютинацию и способны нейтрализовывать инородные частицы, обеспечивая устойчивость к бактериальным инфекциям. К JgM принадлежат антитела системы групп крови АВО, хо-лодовые агглютинины и ревматические факторы. Сохраняются JgM , однако, недолго — период их полураспада не превышает 5 дней.

JgA могут представлять собой как мономеры, так и полимеры и вырабатываются как на первичное, так и на вторичное воздействие антигена. При этом сывороточные JgA накапливаются в крови. Биологическая роль их до конца не изучена. Секреторные JgA продуцируются в слизистых оболочках кишечника, в верхних дыхательных путях, в мочеполовой трубке, содержатся в слезной

Л.ИММУНИТЕТ И_ЗДОРОВЬ жидкости, слюне, молоке и обеспечивают местный иммунитет тканей против антигенов, контактирующих со слизистыми оболочками. Период полураспада — 6 дней.

Мономерные иммуноглобулины JgD и JgE присутствуют в плазме в очень низких концентрациях. Возможно, они функционируют как связанные с клетками рецепторы антигенов. JgE сое? диняются со специальными рецепторами на поверхности базо-филов и тучных клеток при встрече с соответствующим антигеном, клетка — носитель этого иммуноглобулина — секре-тирует гистамин и другие вазоактивные вещества, вызывающие аллергическую реакцию.

JgD находится на поверхности В-лимфоцитов и вместе с JgM составляет основную часть их рецепторов. О физиологической роли их известно мало.

В последние годы стали проясняться некоторые механизмы генной регуляции синтеза иммуноглобулинов. Существенный шаг вперед в этом направлении был сделан тогда, когда было обнаружено, что сегменты генов, кодирующих Н- и L-цепи иммуноглобулинов в предшественниках лимфоцитов, вначале «разбросаны» по хромосоме, то есть пространственно разделены. Для каждой вариабельной (V-области) части цепи исходно существует очень много (по меньшей мере 103) различных генных сегментов. Поскольку и Н-, и L-цепи антител имеют свои V-области, участвующие в связывании антигена, числом возможных комбинаций обеспечивается синтез по меньшей мере 106 специфично-стей антител. При таком огромном разнообразии возможностей антиген вызывает пролиферацию именно тех В-лимфоцитов, которые распознают данный антиген.

7.4. Кооперация иммунокомпетентных клеток

Иммунная реакция организма может иметь различный характер, но всегда начинается с захвата антигена макрофагами крови и тканей или же со связывания со стромой лимфоидных органов. Нередко антиген адсорбируется также на клетках паренхиматозных органов. В макрофагах он может полностью разрушаться, но чаше подвергается лишь частичной деградации. В частности, большинство антигенов в личосомах фагоцитов в гечение часа подвергается ограниченной денатурации и протеолизу. Оставшиеся от них пептиды (как правило, два-три остатка аминокислот) ком-плексируются с экспрессированными на внешней мембране макрофагов молекулами МНС.

Макрофаги и все другие вспомогательные клетки, несущие на внешней мембране антигены, называются антигенпрезентирую-щими, именно благодаря им Т- и В-лимфоциты, выполняя функцию презентации, позволяют быстро распознавать антиген.

Иммунный ответ в виде антителообразования происходит при распознавании В-клетками антигена, который индуцирует их пролиферацию и дифференциацию в плазмоцит. Прямое воздействие на В-клетку без участия Т-клеток могут оказать только тимуснезависимые антигены. В этом случае В-клетки кооперируются с Т-хелперами и макрофагами. Кооперация на тимусза-висимый антиген начинается с его презентации на макрофаге Т-хелперу. В механизме этого распознавания Ключевую роль имеют молекулы МНС, так как рецепторы Т-хелперов распознают номинальный антиген как комплекс в целом или же как модифицированные номинальным антигеном молекулы МНС, приобретшие чужеродность. Распознав антиген, Т-хелперы сек-ретируют у-интерферон, который активирует макрофаги и способствует уничтожению захваченных ими микроорганизмов. Хелперный эффект на В-клетки проявляется пролиферацией и дифференциацией их в плазмоциты. В распознавании антигена при клеточном характере иммунного ответа, кроме Т-хелперов, участвуют также Т-киллеры, которые обнаруживают антиген на тех антигенпрезентирующих клетках, где он комплексируется с молекулами МНС. Более того, Т-киллеры, обусловливающие цитолиз, способны распознавать не только трансформированный, но и нативный антиген. Приобретая способность вызывать цитолиз, Т-киллеры:

— связываются с комплексом антиген + молекулы МНС класса 1 на клетках-мишенях;

- привлекают к месту соприкосновения с ними цитоплазма-тические гранулы;

- повреждают мембраны мишеней после экзоцитоза их содержимого.

В результате продуцируемые Т-киллерами лимфотоксины вызывают гибель всех трансформированных клеток организма, причем особенно чувствительны к нему клетки, зараженные вирусом. При этом наряду с лимфотоксином активированные •Т-киллеры синтезируют интерферон, который препятствует проникновению вирусов в окружающие клетки и индуцирует в клетках образование рецепторов лимфотоксина, тем самым повышая их чувствительность к литическому действию Т-киллеров.

Кооперируясь в распознавании и элиминации антигенов, Т-хелперы и Т-киллеры не только активируют друг друга и своих предшественников, но и макрофагов. Те же, в свою очередь, стимулируют активность различных субпопуляций лимфоцитов.

Регуляция клеточного иммунного ответа, как и гуморального, осуществляется Т-супрессорами, которые воздействуют на пролиферацию цитотоксических и антигенпрезентирующих клеток.

Цитокины. Все процессы кооперативных взаимодействий им-мунокомпетентных клеток, независимо от характера иммунного ответа, обусловливаются особыми веществами с медиаторными свойствами, которые секретируются Т-хелперами, Т-киллерами, мононуклеарными фагоцитами и некоторыми другими клетками, участвующими в реализации клеточного иммунитета. Все их многообразие принято называть цитокинами. По структуре ци-токины являются протеинами, а по эффекту действия — медиаторами. Вырабатываются они при иммунных реакциях и обладают потенциирующим и аддитивным действием; быстро синтезируясь, цитокины расходуются в короткие сроки. При угасании иммунной реакции синтез цитокинов прекращается.

7.5. Неспецифические защитные механизмы

Неспецифическая антиинфекционная резистентность (устойчивость) организмов сформировалась в процессе длительной эволюции и является свойством всей популяции вида однотипно реагировать на внедрение патогенных микроорганизмов, используя для их подавления естественно-физиологические факторы защиты широкого спектра действия.

Тканевые факторы. Среди тканевых факторов антиинфекционной защиты самую важную роль выполняет ареактивность клеток кожи, слизистых оболочек, лимфатических узлов (как иммунологических барьером), фагоцитов и нормальных киллеров.

7.5. Неспецифические защитные механизмы

Видовая ареактивность клеток к патогенным микробам и токсинам обусловлена генотипом, который детерминирует образование на поверхности клеток соответствующих рецепторов. При отсутствии рецепторов адсорбция и проникновение инфекционного агента или яда в клетку невозможны. Генотипическая клеточная ареактивность является исключительно стабильным видовым признаком, который тем не менее может изменяться с возрастом или под действием различных факторов окружающей среды. Видовая ареактивность клеток постепенно приобретается в процессе выздоровления от инфекционного заболевания или после вакцинации. В отличие от генотипической приобретенная ареактивность носит специфический характер, сочетаясь с повышенной активностью иммунокомпетентных клеток.

Кожные покровы и слизистые оболочки обеспечивают невосприимчивость, с одной стороны, как механические защитные барьеры, а с другой стороны — и вследствие выделения антимикробных веществ широкого диапазона действия. Так, в секретах потовых и сальных желез кожи находятся различные ингибиторы, молочные и жирные кислоты, угнетающие многие виды патогенных бактерий. Слизистая оболочка желудка секретирует соляную кислоту, в которой быстро инактивируется холерный вибрион. Многие слизистые оболочки продуцируют муколити-ческий фермент лизоцим, подавляющий благодаря муколитиче-скому действию рост и размножение бактерий и вирусов. Он обнаружен в больших концентрациях в гранулах полиморфноя-дерных лейкоцитов и в макрофагах легочной ткани. При распаде этих клеток лизоцим выделяется во внеклеточную жидкость. Этот белок содержится также в слизистой оболочке желудочно-кишечного тракта, носоглотки и в слезной жидкости и сдерживает рост обитающих в этих средах сапрофитных микроорганизмов. Не вызывает сомнения в связи с этим важность поддержания оптимального состояния активности отмеченных структур в обеспечении надежного иммунитета человека.

Мощным естественным фактором иммунитета являются и лимфатические узлы. Проникновение в них патогенных бактерий приводит к развитию воспалительного процесса, сопровождающегося освобождением из тканей биологически активных веществ. Под влиянием последних происходит активация лейкоцитов, склеивающихся вокруг патогенных микробов' и пре-

7.5. Неспецифические защитные механизмы

пятствующих их распространению в кровоток и в подлежащие органы и ткани.

Фагоциты и фагоцита?. Защитную функцию клеток, способных поглощать и переваривать микробы, впервые показал И.И. Мечников, назвав их фагоцитами. Среди них он различал микрофаги: нейтрофилы, эозинофилы, базофилы — и макрофаги: моноциты крови, гистоциты, эндотелиальные и ретикулярные клетки внутренних органов и костного мозга.

Сам процесс уничтожения микробов фагоцитами называется фагоцитозом. Различают завершенный и незавершенный фагоцитоз. Завершенный заканчивается полным разрушением микрофага. Однако некоторые виды микроорганизмов проявляют большую устойчивость к лизосомальным антимикробным веществам или даже размножаются внутри фагоцитов. Такой незавершенный фагоцитоз чаще наблюдается в нейтрофилах и заканчивается их гибелью, в других же случаях фагоцитированные микробы выталкиваются из них. В отличие от нейтрофилов, которые поглощают и переваривают в основном истинные бактерии, макрофаги фагоцитируют спирохеты, актиномицеты, грибки, простейшие, вирусы, а также атрофирующиеся, омертвевшие или злокачественно перерожденные клетки. Нормальные киллеры, или клетки-убийцы, — это крупные лимфоциты с большим количеством цитотоксических веществ, на внешней мембране которых имеются специфические рецепторы, распознающие, например, злокачественные и инфицированные вирусом клетки.

Гуморальные факторы иммунитета, обеспечивающие врожденную резистентность организма, очень многочисленны. Вырабатываются они разнообразными клетками, главным образом Т-лимфоцитами и макрофагами, и нередко являются их активаторами. Концентрация их в крови и лимфе здоровых людей небольшая, но при инфицировании может резко возрастать. Большинство гуморальных факторов обладает антимикробной активностью и широким спектром действия. Природа их многообразна, но, как правило, они являются полипептидами.

Среди гуморальных факторов антиинфекционной, защиты основное значение придают комплементу, действующему в сочетании с ним пропердину, интерлейкину-1 (ИЛ-1), С-реактивно-му белку (СРВ), интерферону-1 и другим микроцидным факторам крови.

СРВ относится к белкам острой фазы, которая возникает в организме под влиянием внешних или внутренних причин и характеризуется рядом реакций со стороны различных систем организма, в том числе и иммунной. Внешне эта фаза характеризуется количественным возрастанием некоторых циркулирующих белков плазмы, в частности СРВ увеличивает их концентрацию в 1000 раз.

Данные, которые имеют прямое отношение к биологической функции СРВ, вытекают из исследования его связывающей активности. Выявлены две главные группы связывающей активности СРВ. Первая — связывание с фосфохолиновыми соединениями, которые широко представлены на мембранах бактерий, в экстрактах многих паразитов, кожных грибков. Вторая обеспечивает связывание с поликатионами, миелиновыми основными белками, являющимися интегральными составными частями клеток и освобождающимися в пораженной ткани. СРВ, как и иммуноглобулины, обладает способностью приобретать биологические свойства после соединения с вышеперечисленными соединениями путем изменения конфигурации молекулы. Будучи связанными с какой-либо химической молекулой, СРБ могут служить посредниками в осаждении, агглютинации, капсуляр-ном набухании бактерий и активации комплемента. СРБ присут-, ствует в каждой нормальной сыворотке, но в очень малых количествах. Вопрос заключается не в том, присутствует ли в сыворотке СРБ, а в том — сколько его? В норме количество СРБ составляет приблизительно 0,58 мкг/мл. Количество СРБ как ре-актанта острой фазы увеличивается до 500 мкг/мл. Синтезируется он в геноцитах, индуктор его синтеза — интеркин-1.

В теоретическом плане изучение реакции острой фазы позволило поставить принципиальные вопросы: во всех ли случаях внедрения антигена в организм включается иммунная система для его удаления? Так ли уж необходимо и биологически целесообразно включать в работу сложные и многообразные механизмы иммунного ответа на проникновение в организм даже незначительных доз антигена?

В опытах на мышах было показано, что внутривенное введение им за 30 минут до заражения смертельной дозой пневмококка полученного из плазмы человека СРБ защищало от гибели 50—80% этих особей. Описанные опыты косвенно дают отрицательный ответ на поставленный выше вопрос и заставляют пересмотреть некоторые представления о характеристике иммунного ответа, общепринятые в последнее время.

Структурно сформированного комплемента как гуморального фактора иммунитета в организме здоровых людей и животных нет — в крови циркулируют его компоненты: находясь в разобщенном состоянии, они являются инертными белками — предшественниками комплемента. Формирование комплемента в единое целое происходит при внедрении в организм болезнетворных микробов или других антигенов. При этом на основе его инертных субстанций они создают ферментоподобные соединения (С1—С9), вызывающие цепную реакцию образования комплемента, способного лизировать клетки (бактерии, эритроциты) или чаще просто элиминировать генетически чужеродную метку. Кроме того, существует по меньшей мере 11 регуляторных белков, влияющих на активность системы комплемента.

Различают классический и альтернативный пути активации комплемента. Первый из них инициируется иммунным комплексом АГ—AT, второй, более редкий, — некоторыми полисахаридами и липополисахаридами бактерий без участия антител. Для активации комплемента по альтернативному пути требуется, кроме прочих факторов, плазменный белок пропердин. При активации факторы комплемента расщепляются на мелкие и крупные фрагменты. Последние, обычно обозначаемые буквой «в», обладают двумя основными свойствами: они могут связываться с клеточными мембранами и активировать следующий фактор в каскадной реакции комплемента. Мелкие фрагменты, обозначаемые буквой «а», обладают хемотоксическим действием и способностью повышать проницаемость мембран. Кроме того, они активируют гранулоциты и макрофаги и вызывают воспалительные реакции. При расщеплении промежуточных факторов комплемента высвобождаются вещества, вызывающие иммунную адгезию (агрегацию чужеродных клеток), опсонизацию (изменение свойств поверхности чужеродных клеток, при котором они ста^ новятся более доступными для фагоцитоза) и виролиз (разрушение вирусов). На конечном этапе образуется цитолитический комплекс СБ-9, вызывающий повреждение и уничтожение чужеродных клеток, несущих антитела (иммуногемолиз, бактериолиз). Такие эффекты антител, как гемолитический, бактериологический и цитоксический, проявляется только в присутствии комплемента.

Интерферон относится к группе видоспецифических глико-протеинов, обладающих антивирусным действием. Синтез и выделение интерферона происходит за несколько часов, благодаря чему защита против размножения внедрившихся вирусов обеспечивается еще до того, как начнет повышаться в крови содержание специфических антител.

Естественные антитела содержатся в плазме крови и активны против чужеродных агентов, с которыми организм никогда раньше не сталкивался (например, агглютинины плазмы крови). Эти образования называют также нормальными антителами. Однако, поскольку подобные антитела не были обнаружены у животных, выращенных в строго стерильных условиях, они вряд ли могут быть действительно «естественными» — вероятно, их присутствие объясняется невыявленным контактом с соответствующими антигенами либо перекрестными реакциями, обусловленными их низкой специфичностью.

7.6. Факторы риска иммунитета

В настоящее время иммунная система представляется как система распознавания внешнего и внутреннего мира, только мира органического — вирусов, микробов, поврежденных и аномальных клеток, полисахаридов, белков. При определении того, что принадлежит организму и что нет, иммунная система обращает особое внимание на детали химии белков, ибо из всех молекул, составляющих живые организмы, белки являются наиболее характерными и наиболее специализированными. То есть в организме есть система, которая прощупывает внешний мир ежесекундно, постоянно — она анализирует все, что попадает в человека, будь то с пищей или через кожу. И это не просто «узнавание», но и расшифровка структуры, и создание против нее реагентов. Подобно нервной системе, иммунная способна «учиться». Она анализирует опыт «встречи» с чужеродным белком, запоминает его практически на всю жизнь и передает будущим поколениям клеток. Поскольку ее ткани очень активны и сильно вовлечены в процесс информации, ее клетки становятся очень быстро и необычайно сильно подверженными повреждениям такими видами энергии и материи, которые могут изменить (мутировать) ДНК. Такое понимание работы иммунной системы позволяет заниматься уже не только защитой организма, но и более широкими проблемами, связанными с самой сутью жизни. За последние десятилетия иммунная система людей испытывает огромную нагрузку в результате стрессов, применения лекарств, нездоровой экологии и вредных привычек. Напряжение иммунитета как одного из механизмов адаптации организма, направленного на восстановление нарушений гомеостаза, вызванных факторами измененной человеком среды, получило название антропоэкологического ин-фекционно-иммунологического напряжения. Нескомпенсированное напряжение иммунитета обозначается термином утомление, когда речь идет о срыве механизмов адаптации и развитии неустойчивого состояния, которое может перейти в болезнь. Усилившееся за последние десятилетия давление на человеческий организм неадекватных факторов и многочисленных чужеродных соединений — ксенобиотиков проявляется в виде изменений на всех уровнях организации иммунной системы, массовой аллергизации людей, в преобладании хронических процессов над острыми, в росте онкологических заболеваний.

Развитие антропоэкологического инфекционно-иммуноло-гического «утомления», характерного для человека, находящегося между здоровьем и болезнью, и охватывающего до 70% людей на Земле, создает постоянную угрозу для роста так называемых экологически зависимых болезней.

Проблема влияния опасных и вредных экологических факторов (ОВЭФ) на организм человека в значительной степени определяется тем, что это влияние опосредуется через кроветворную и иммунную системы. Этому способствует целый ряд факторов и, главным образом, подвижность клеточных элементов обеих систем. В связи с этим при любом пути воздействия ОВЭФ (воздушный, энтеральный, контактный, лучевой) возникает непосредственный контакте клетками кроветворной и иммунной систем и формируется целостная (системная) реакция на факторы воздействия с соответствующими клинико-иммунологическими и гематологическими проявлениями

Далее:

 

Глава 8 Психодиагностика индивидуального сознания.

Принципы полноценного питания.

Хроническая ишемическая болезнь сердца.

Разделение опухолей на доброкачественные и злокачественные условно и.

Показания к госпитализации в отделение реанимации и интенсивной терапии:.

3. Психология познавательных процессов.

Царь-голод.

 

Главная >  Публикации 


0.0008