Главная >  Публикации 

 

Глава IX. Реакции сосудов мягкой мозговой оболочки ги сосудов внутри мозга на нервные и гуморальные воздействия



Расширение артерий мягкой мозговой оболочки наблюдается не только при внезапном резком падении давления, но и при медленной кровопотере. На рис. 143 можно проследить, что и в этом случае падение давления сопровождается кратковременным сужением артерий, за которым следует расширение их (Фог, 1937; Б. Н. Клосовский, Е. Н. Космарская, 1950).

При изучении реакций артерий мягкой мозговой оболочки в ответ на постепенное снижение кровяного давления мы в совместных опытах с Е. Н. Космарской поставили своей целью проследить поведение не только артерий, но и вен в течение всего процесса медленной анемизации мозга.

На прилагаемых микрофотографиях (рис. 144, а, б, в, г, д, е, ж, з), взятых в качестве примера из нашей работы, обращает на себя внимание различный характер поведения артерий и вен при медленно развивающейся анемии головного мозга.

На микрофотографии (рис. 144, а) представлен, так сказать, исходный фон опыта. Как можно видеть, в поле зрения располагается артерия диаметром 58 м и три отходящие от нее веши диаметром 15, 40 и 32 м.

Рис. 143. Реакция артерий мягкой мозговой оболочки при постепенном выпускании крови (по Фогу). В каждом из интервалов от а до b выпускалось 15 см3 крови.

Плотно заполненные кровью артерии располагаются на фоне не менее хорошо заполненных вен, диаметр которых равен 76, 63, 58 м.

Следующий снимок (рис, 144, б), сделанный через одну минуту после начала выпускания крови, дает возможность отметить изменение калибров артерий и вен, происходящее в противоположном направлении. Как можно видеть, артерии всех калибров резко расширились, но в то же время вены не менее заметно сократились.

При последующем выпускании артериальной крови увеличение диаметра артерий становится еще более значительно выраженным, но, наряду с расширением, намечаются первые признаки менее плотного заполнения артерий кровью.

В боковых ветвях основной артерии, а также и в венах красные кровяные шарики скапливаются большими или меньшими кучками, разделенными между особой плазмой. Вены по сравнению с предыдущей стадией несколько увеличивают свой размер, но остаются более узкими по сравнению с тем, какими они были в начале опыта.

Рис. 144. Реакции артерий и вен мягкой мозговой оболочки кошки при постепенном выпускании крови. а — спокойный сон; б — через 1 минуту после начала выпускания крови.

Рис. 144. Реакции артерий и вен мягкой мозговой оболочки кошки при постепенном выпускании крови.

в — через 3 минуты после начала выпускания крови; г — через 25 секунд после остановки дыхания.

Рис. 144, Реакции артерий и вен мягкой мозговой оболочки кошки при постепенном выпускании крови.

д — через 45 секунд после остановки дыхания; е — через 1 минуту 40 секунд после остановки дыхания.

Рис. 144. Реакции артерий и вен мягкой мозговой оболочки кошки при постепенном выпускании крови.

ж — через 2 минуты 30 секунд после остановки дыхания; з — через 12 минут после остановки дыхания. Фото через «окно» в черепе с помощью капилляроскопа. Увеличение 60.

После остановки дыхательной деятельности артерии и вены в течение некоторого времени сохраняют размеры, которые они имели к моменту остановки дыхания (рис. 144. г, д, е). Изменение состояния сосудистой сети выражается лишь во вое более усиливающейся фрагментации в расположения крови в сосудах.

На следующей стадии, однако, наступившей в описываемом опыте через 2'/2 минуты после остановки дыхания, размер артерий уменьшился почти до исходного (рис. 144, ж).

Неравномерность заполнения артерий кровью стала еще более выраженной. При наблюдении в капилляроскоп перемещение крови по артериям и венам продолжалось еще довольно значительное время после остановки дыхательной и сердечной деятельности и прекратилось лишь через 12 минут.

На микрофотографии (рис. 144, з), снятой с мягкой мозговой оболочки уже после прекращения передвижения крови по сосудам, можно видеть, насколько резко выраженные изменения наступили в картине расположения сосудов.

Резко суженная артерия содержит кровь лишь в отдельных участках. Одна из ее ветвей не содержит крови совершенно. Вены сужены. Сосудистый рисунок стал очень бледным вследствие отсутствия крови во многих сосудах.

Проделанные эксперименты указывают, что кратковременное сужение артерий, наблюдающееся вслед за начинающим падать давлением, следует рассматривать как результат пассивного следования стенок сосуда за уменьшающимся объемом крови в нем. Наступающее в дальнейшем расширение артерий, по всей вероятности, связано с особенностями реакции со стороны гладких мышечных волокон сосудистой стенки в ответ на увеличивающееся содержание углекислоты в ткани мозга и в крови. Благодаря незначительному количеству мышечных волокон в стенке вен действие углекислоты на них крайне незначительно. Поэтому основным фактором, влияющим на просвет все, оказывается постепенно убывающее количество крови, поступающей к мозгу под все уменьшающимся давлением.

Анемия головного мозга, вызванная раздражением блуждающего и других нервов или выпусканием крови, постоянно сопровождается падением общего кровяного давления. Снизившееся давление или удерживается на низком уровне в течение всего времени раздражения, или постепенно понижается, как это имеет место при геморраялиях. При тако-го рода анемии головного мозга артерии или сразу расширяются до наибольшей величины в случаях резкого внезапного падания давления, или расширяются постепенно, по мере уменьшения крови в организме при потере ее. Расширившиеся артерии и суженные вены сохраняют свой просвет в продолжение всего времени, пока кровяное давление держится на низком уровне, и возвращаются к исходному размеру при повышении давления.

Несколько иная картина наблюдается при прекращении кровотока по основным артериям, снабжающим головной мозг. Сотрудница нашей лаборатории Е. Н. Космарская показала, что при выключении сонных и позвоночных артерий давление в сосудах виллизиева круга и в сосудах головного мозга резко падает и остается на низком уровне в продолжение 10—20 минут после зажатия сосудов. Общее давление при этом не только не падает, но, благодаря регуляторной деятельности каротидного синуса, значительно повышается Уровень повышения общего давления и различная у животных степень развития коллатеральных сосудов опреРис. 145. Реакции сосудов мягкой мозговой оболочки кролика при зажатии обеих общих сонных артерий на шее (опыт без предварительной наркотизации животного), а — просвет артерий и вен до опыта; б — артерии и вены через 30 секунд после зажатия сонных артерий.

Рис. 145. Реакции сосудов мягкой мозговой оболочки кролика при зажатии обеих общих сонных артерий на шее (опыт без предварительной наркотизации животного).

в — то же через l1/2 минуты; г—через 1 минуту после снятия зажимов с сонных артерий.

Фото через «окно» в черепе. Увеличение 60.

Рис. 146. Реакции артерий и вен мягкой мозговой оболочки кошки при зажатии обеих общих сонных и одной из позвоночных артерий на шее (опыт в условиях предварительной наркотизации).

а — спокойный сон; б—артерии и вены через 1 минуту 25 секунд после зажатия трех артерий.

деляют скорость переключения мозга на кровоснабжение по коллатеральным сосудам, а тем самым лучшее или худшее питание его.

Таким образом, в случаях зажатия основных питающих мозг артерий вслед за резким падением давления в сосудах мозга оно по степенно и непрерывно повышается благодаря тому, что мозг получает все большее количество крови под высоким давлением. Соответственно с этим при выключении снабжающих мозг артерий наблюдается некоторое своеобразное изменение ширины просвета сосудов мягкой мозговой оболочки.

Рис. 146. Реакции артерий и вен мягкой мозговой оболочки кошки при зажатии обеих общих сонных и одной из позвоночных артерий на шее (опыт в условиях предварительной наркотизации).

в —через 1 минуту 10 секунд после снятия зажимов с артерий. Фото через «окно» в черепе. Увеличение 60.

На микрофотографиях (рис. 145, а, б, в, г), взятых из работы, проделанной нами совместно с Е. Н. Космарской, представлены результаты одного из опытов на ненаркотизированном кролике. Можно видеть, что зажатие обоих общих сонных артерий на шее кролика без наркоза имеет своим следствием расширение не только артериальной, но и венозной части сосудистой сети мягкой мозговой оболочки. Те же соотношения мы наблюдаем у животных, у которых закрытие артерий производилось после предварительной наркотизации (рис. 146, а, 6, в).

Падение давления в сосудах головного мозга, следующее за выключением снабжающих его артерий, ведет к накоплению продуктов обмена веществ нервной ткани. Увеличенное содержание углекислоты вызывает расширение артерий мягкой мозговой оболочки. Уменьшение скорости тока крови сопровождается замедленным оттоком ее из вен, в результате чего вены также расширяются. По истечении некоторого времени с момента закрытия артерий и с увеличением поступления крови к мозгу по коллатеральным сосудам просвет артерий и вей начинает уменьшаться. Освобождение артерий от зажимов ведет к быстрому возвращению диаметров артерий и вен мягкой мозговой оболочки к исходной величине.

Таким образом, можно сделать заключение, что замедление скорости тока крови и увеличение содержания углекислоты в ткани мозга являются непосредственной причиной расслабления самой сосудистой стенки.

Важнейшую роль в регуляции просвета артерий мягкой мозговой оболочки играет химический состав крови животного. Избыточное содержание в крови кислорода сопровождается уменьшением диаметра артерий, тогда как увеличение напряжения углекислоты влечет за собой расширение их.

Зажатие дыхательного горла у животного при нормальном поступлении крови к мозгу по интактным сонным и позвоночным артериям ведет к резкому расширению артерий и вен всех калибров мягкой мозговой оболочки (Б. Н. Клосовский, Е. Н. Космарская, 1950). Это ясно видно на микрофотографии (рис, 147, а, б, в, г), снятой с мягкой мозговой оболочки кошки, на дыхательное горло которой был наложен зажим. Прослеживая поведение сосудов мягкой мозговой оболочки в течение длительного времени, мы могли убедиться в чрезвычайной силе асфиксии как сосудорасширяющего фактора. В эксперименте, представленном на микрофотографиях (рис. 147), артерии и вены продолжали оставаться расширенными даже спустя более 20 минут после снятия зажима с трахеи. Более того, спустя более значительный интервал времени, когда артерии уже возвращались к исходной величине, вены оказывались еще заметно расширенными.

Таким образом, одновременное действие все увеличивающейся концентрации углекислоты на внутреннюю, обращенную к току крови, и на наружную ставку артерии ведет к расширению ее. Расширение тем более выражено, чем сильнее и продолжительнее асфиксия. Резкое увеличение общего кровяного давления, наблюдающееся в условиях асфиксии всего организма, имеет своим следствием увеличение тока крови по расширившимся артериям мягкой мозговой оболочки и пассивное растяжение вен, Следовательно, анемическая или аноксическая асфиксия мозга ведет к расширению артерий мягкой мозговой оболочки. Расширение артерий является результатом изменении тонического состояния их стенки,, возникающего при непосредственном воздействии углекислоты на гладкие мышечные волокна, входящие в состав артериальной стенки. Иначе говоря, угольная кислота представляет собой мощный сосудорасширяющий фактор, играющий важнейшую роль в регуляции просвета сосудов мягкой мозговой оболочки.

По данным отдельных авторов, артерии мягкой мозговой оболочки испытывают регулирующее влияние и со стороны осмотического давле-ния находящейся в них крови (Форбс, Вольф, 1928). В то время как введение в ток крови животного изотонического раствора поваренной соли не вызывает никаких реакций со стороны артерий мягкой мозговой оболочки, введение в ток ирови или в брюшную полость гипертонических растворов ведет к сокращению их.

Однако такого рода реакция наблюдается не во всех случаях. Имеются сообщения, согласно которым введение гипертонических растворов не влечет за собой изменения просвета артерий мягкой мозговой оболочки -Хау и Мак Кинли, 1927). Таким образом, вопрос о влиянии Рис. 147. Реакции артерий и вен мягкой мозговой оболочки кошки при асфиксии.

а — артерии и вены при спокойном сне кошки в состоянии наркоза; б — сосуды через 2 минуты после наложения зажима на дыхательное горло.

Рис. 147. Реакции артерий и вен мягкой мозговой оболочки кошки при асфиксии.

в — артерии и вены через 23 минуты после снятия зажима с трахеи; г — сосуды мягкой мозговой оболочки через 32 минуты после снятия зажима с трахеи.

Фото с помощью капилляроскопа через «окно» в черепе. Увеличение 60.

осмотического давления крови на просвет артерий не может считаться решенным. Поскольку введение гипертонических растворов всегда сопровождается повышением общего кровяного давления, трудно сказать, на какой из факторов реагирует при этом сосудистая стенка — на увели-чеиное давление крови или на повышенное осмотическое давление ее.

Изменение величины артерий мягкой мозговой оболочки при нарастании внутричерепного давления зависит от величины, на которую повысилось давление, и от быстроты, с которой это повышение наступило. Имеющиеся в литература данные указывают, что артерии сохраняют свой нормальный размер до тех пор, пока внутричерепное давление не превысит в 4—5 раз величину его в нормальном состоянии животного. При дальнейшем увеличении давления артерии начинают расширяться, и ток крови в них замедляется. Продолжающееся нарастание внутричерепного давления имеет своим следствием уже сужение артерий. В тех же случаях, когда внутричерепное давление достигает очень высокого уровня, наблюдается полное закрытие и запустевание артерий мягкой мозговой оболочки -Кушинг (Gushing), 1902; Вольф и Форбс, 1928.

Итак, артерии мялкой мозговой оболочки изменяют свой просеет при воздействии на них ряда факторов, причем реакции артерий могут быть отмечены при непосредственном наблюдении их через «окно» вставленное в череп.

Что же касается изменений просвета внутримозговых сосудов, то представление об их реакциях при жизни животного может быть получено только косвенным путем при измерении температуры мозга и скорости тока крови в сосудах мозга. Однако данные о температуре мозга или скорости тока крови в сосудах мозга, полученные с помощью термопары, не отражают полностью истинного положения вещей, так как при этом регистрируется не только скорость тока крови в сосудах и местное расширение их, но и уровень метаболических процессов во всей обследуемой области мозга.

С помощью термопары рядом исследователей было показано, что наиболее сильное влияние на внутримозговое кровообращение оказывает углекислота. Вдыхание смеси, содержащей углекислый газ, постоянно сопровождается увеличением скорости тока крови в сосудах мозга, приблизительно пропорциональным напряжению углекислоты в смеси. Такое действие углекислоты наблюдается в полушариях головного мозга, в продолговатом мозгу, гипоталамической области у различных животных, в условиях различного наркоза, проявляется на артериях всех без исключения размеров -Шмидт и Пиэрсон, 1934; Вольф и Леннокс, 1930; Шнейдер, 1938; Норкросс (Norkross), 1938; Шмидт и Гендрих, 1939, и др..

Таким образом, углекислоту можно рассматривать как один из важнейших факторов, регулирующих также и внутримозговое кровообращение.

Углекислота, а возможно, кроме нее, и другие продукты обмена веществ нервной ткани обусловливают увеличение температуры и скорости тока крови в сосудах областей мозга, обнаруживающих усиленную функциональную деятельность при раздражении соответствующего рецептора (Шмидт, 1936; Б. Н. Клосовский, 1942).

В противоположность действию углекислоты избыточное насыщение крови кислородом или гипервентиляция атмосферным воздухом ведут к уменьшению скорости тока крови в сосудах мозга.

Введение в сосудистое русло таких общих сосудорасширяющих веществ, как ацетилхолин, нитроглицерин, кофеин и др., увеличивает скорость тока крови в мозгу. Реакция сосудов при этом, по всей вероятности, не связана с изменениями в общем кровяном давлении, которое после резкого, но кратковременного падения быстро возвращается к своему нормальному уровню.

Характерным оказывается действие гистамина. Будучи мощным сосудорасширяющим средством для сосудов различных органов я тканей, пистамин вызывает в мозговых сосудах замедление скорости тока крови (рис. 148).

Ряд исследованных в настоящее время общих сосудосуживающих веществ и в том числе адреналин, эфедрин, препарат задней доли гипофиза и другие оказывают влияние на мозговую циркуляцию только косвенным путем, изменяя общее кровяное давление. Указанные вещестРис. 149. Влияние различных сосудосуживающих веществ на ток крави в сосудах мозга и мышцы (по Шмидту и Гендриху).

Сплошной линией обозначен ток крови в мозгу; прерывистой — ток крови в мышце. 1 — адреналина; 2 — питрессина; 3 — питуитрина; 4 — эфедрина.

Рис. 148. Действие различных сосудорасширяющих веществ на сосуды мозгового вещества и мышц (по Шмидту и Гендриху).

Введение веществ в артериальное русло. Сравнительные дозы в 0,001 мг. Сплошной линией обозначен ток крови в мозгу; прерывистый — ток крови в мышце.

1 — нитроглицерина; 2 — мехолила; 3 — кофеина; 4 — ацетилхолнна; 5 — гистамина.

ва в той или «ной мере суживают сосуды различных органов и тка-ней, в результате чего повышается общее кровяное давление. Отражением повышенного давления является увеличение скорости тока крови в сосудах мозга (рис. 149). По сообщению Шмидта (1939), единственным веществом, вызывающим сужение сосудов мозга независимо от изменения величины общего кровяного давления, является эрготамин, однако только в дозах, намного превышающих допустимые для терапии.

На различных животных, как в условиях наркоза, так и без него, на всем животном или на изолированной голове его, перфузируемой кровью, были получены данные, свидетельствующие об изменениях скорости пока крови в сосудах мозга при манипуляциях на шейном симпатическом нерве -Д. Шнейдер, 1934; Томас (Thomas), 1936; Б. Н. Клосовский, 1936; Букерт и Журдэн (Boukaert et Jourdan), 1936; Hopкpocc, 1938, и др..

Перерезка симпатического нерва ведет к увеличению скорости тока крови во внутримозговых сосудах, а раздражение его сопровождается уменьшением скорости тока крови. Полученные данные, косвенно указывающие на изменение просвета внутримозговых сосудов при возбуждении.

или отсутствии влияния со стороны симпатического нерва, не могут считаться, однако, окончательными и требуют дальнейшей эксперимен-тальной проверки.

Экспериментальные данные, полученные многими исследователям» с помощью различных методов, приводят к заключению, что расширение сосудов в мозгу преобладает над их сужением. В самом деле, под влиянием воздействия со стороны симпатической части вегетативной нервной системы сосуды мозга уменьшают свой просвет на 8—15% от «сходной величины, а единственным химическим веществом, действующим на стенку мозговых сосудов непосредственно, является эрготамин в больших дозах. В то же время под влиянием воздействия со стороны парасимпатической части вегетативной нервной системы сосуды мозга расширяются на 50% и более по сравнению с их исходной величиной. Не менее мощным фактором, расширяющим мозговые сосуды, является углекислота.

Таким образом, в настоящее время известны два рода воздействий на мозговые сосуды, вызывающие их расширение. Первым из этих воздействий является регулирующее влияние со стороны нервной системы. Рецепторным полем для рефлекторного расширения мозговых сосудов; служит вестибулярный аппарат, проводниками чувствительных импульсов — проводящие пути, идущие в составе заднего продольного пучка. Двигательная часть рефлекторной дуги берет начало в ядре Дарйшевича и представляет собой нервные волокна, идущие в составе глазодвигательного нерва к сосудам основания мозга

Далее:

 

О добре и зле.

7.4. Кооперация иммунокомпетентных клеток.

От Александрии до Лондона.

Глава II Счастье в дом своими руками.

Народные средства для лечения язвы желудка и двенадцатиперстной кишки.

1. Растения, применяемые в народе при лечении желудочно-кишечных заболеваний..

Тенсегрити..

 

Главная >  Публикации 


0.0014