Главная > Публикации
Микробиология в XX В.Одним из основоположников медицинской микробиологии наряду с Л. Пастером явился немецкий микробиолог Р. Кох (R. Koch, 1843—1910), занимавшийся изучением возбудителей инфекционных заболеваний. Свои исследования Р. Кох начал, еще будучи сельским врачом, с изучения сибирской язвы и в 1877 г. опубликовал работу, посвященную возбудителю этого заболевания — Bacillus anthracis. Вслед за этим внимание Р. Коха привлекла другая тяжелая и широко распространенная болезнь того времени—туберкулез. В 1882 г. Р. Кох сообщил об открытии возбудителя туберкулеза, который в его честь был назван "палочкой Коха". (В 1905 г. за исследование туберкулеза Р. Коху была присуждена Нобелевская премия.) Ему принадлежит также открытие возбудителя холеры. Родоначальником русской микробиологии является Л. С. Ценковский (1822—1887). Объектом его исследований были микроскопические простейшие, водоросли, грибы. Л. С. Ценковский открыл и описал большое число простейших, изучал их морфологию и циклы развития. Это позволило ему сделать вывод об отсутствии резкой границы между миром растений и животных. Л. С. Ценковский интересовался проблемами медицинской микробиологии. Им была организована одна из первых Пастеровских станций в России и предложена вакцина против сибирской язвы (так называемая "живая вакцина Ценковского"). Основоположником медицинской микробиологии справедливо считают также И. И. Мечникова (1845—1916). И. И. Мечников был разносторонним исследователем, но основные свои научные интересы он сосредоточил на проблеме изучения взаимоотношений хозяина и микроорганизма-паразита. В 1883 г. И. И. Мечников создал фагоцитарную теорию иммунитета. Невосприимчивость человека к повторному заражению после перенесенного инфекционного заболевания была известна давно. Однако природа этого явления оставалась непонятной и после того, как были разработаны и широко применялись прививки против ряда инфекционных заболеваний. И. И. Мечников показал, что защита организма от болезнетворных микроорганизмов — сложная биологическая реакция, в основе которой лежит способность белых кровяных телец (фагоцитов) захватывать и разрушать посторонние тела, попавшие в организм. Вклад И. И. Мечникова в науку был оценен его современниками. В 1909 г. за исследования по фагоцитозу И. И. Мечникову была присуждена Нобелевская премия. Большой вклад в развитие общей микробиологии внесли русский микробиолог С. Н. Виноградский (1856—1953) и голландский микробиолог М. Бейеринк (М. Beijerinck, 1851—1931). Оба много и плодотворно работали в разных областях микробиологии. Впитав идеи Л. Пастера о многообразии форм жизни в микромире, С. Н. Виноградский ввел микроэкологический принцип в исследование микроорганизмов. Для выделения в лабораторных условиях группы бактерий с определенными свойствами С. Н. Виноградский предложил создавать специфические (элективные) условия, дающие возможность преимущественного развития данной группы организмов. Поясним это примером. С. Н. Виноградский предположил, что среди микроорганизмов есть виды, способные усваивать молекулярный азот атмосферы, являющийся инертной формой азота по отношению ко всем животным и растениям. Для выделения таких микроорганизмов в питательную среду были внесены источники углерода, фосфора и другие минеральные соли, но не добавлено никаких соединений, содержащих азот. В результате в этих условиях не могли расти микроорганизмы, которым необходим азот в форме органических или неорганических соединений, но могли расти виды, обладавшие способностью фиксировать азот атмосферы. Именно так С. Н. Виноградским в 1893 г. был выделен из почвы анаэробный азотфиксатор, названный им в честь Л. Пастера Clostridium pasteurianum. Пользуясь изящными методическими приемами, в основу которых был положен микроэкологический принцип, С. Н. Виноградский выделил из почвы микроорганизмы, представляющие собой совершенно новый тип жизни и получившие название хемолитоавтотрофных. В качестве единственного источника углерода для построения всех веществ клетки хемолитоавтотрофы используют углекислоту, а энергию получают в результате окисления неорганических соединений серы, азота, железа, сурьмы или молекулярного водорода. Микроэкологический принцип был успешно развит М. Бейеринком и применен при выделении различных групп микроорганизмов. В частности, спустя восемь лет после открытия С. Н. Виноградским анаэробного азотфиксатора, М. Бейеринк обнаружил в почве еще один вид бактерий, способных к росту и азотфиксации в аэробных условиях, — Azotobacter chroococcum. Круг научных интересов М. Бейеринка был необычайно широк. Ему принадлежат работы по исследованию физиологии клубеньковых бактерий, изучению процесса денитрификации и сульфатредукции, работы по изучению ферментов разных групп микроорганизмов. С. Н. Виноградский и М. Бейеринк являются основоположниками экологического направления микробиологии, связанного с изучением роли микроорганизмов в природных условиях и участием их в круговороте веществ в природе. Сообщения об активном участии микроорганизмов в процессах превращения веществ в природе стали быстро накапливаться в 70—80-х гг. XIX в. В 1877 г. французские химики Т. Шлезинг (Т. Schloesing) и А. Мюнц (A. Muntz) доказали микробиологическую природу процесса нитрификации. В 1882 г. П. Дегерен (Р. Deherein) обнаружил аналогичную природу процесса денитрификации, а двумя годами позднее он же установил микробиологическую природу анаэробного разложения растительных остатков. М. С. Воронин в 1867 г. описал клубеньковые бактерии, а спустя почти двадцать лет Г. Гельригель (Н. Неllrigеl) и Г. Вильфарт (Н. Willfarth) показали их способность к азотфиксации. П. А. Костычев создал теорию микробиологической природы процессов почвообразования. Конец XIX в. ознаменовался еще одним важным открытием в области микробиологии. В 1892 г. Д. И. Ивановский обнаружил вирус табачной мозаики — представителя новой группы микроскопических существ. В 1898 г. независимо от Д. И. Ивановского вирус табачной мозаики был описан М. Бейеринком. Таким образом, вторая половина XIX в. характеризуется выдающимися открытиями в области микробиологии. На смену описательному морфолого-систематическому изучению микроорганизмов, господствовавшему в первой половине XIX в., пришло физиологическое изучение микроорганизмов, основанное на точном эксперименте. Развитие нового этапа микробиологии связано в первую очередь с трудами Л. Пастера. К концу XIX в. намечается дифференциация микробиологии на ряд направлений: общая, медицинская, почвенная. Микробиология в XX В. Успехи микробиологии во второй половине XIX в. привели к обнаружению чрезвычайного разнообразия типов жизни в микромире. Следующий вопрос, заинтересовавший исследователей: как объяснить такое многообразие, определить его границы, выявить, на чем оно основано? Постановкой этой проблемы, имеющей общебиологическое значение, мы обязаны двум крупнейшим микробиологам нашего времени А. Клюйверу (А. Kluyver 1888—1956) и К. ван Нилю (С. van Niel, 1897–1985). А. Клюйвер и его ученики (одним из них был К. ван Ниль) провели сравнительные биохимические исследования в относительно далеко отстоящих друг от друга физиологических группах микроорганизмов. Было изучено много форм микроорганизмов и примерно к середине 50-х гг. нашего века сформулировано то, что теперь называют теорией биохимического единства жизни. В чем же конкретно состоит биохимическое единство жизни? Общее основано на единстве конструктивных, энергетических процессов и механизмов передачи генетической информации. А. Клюйвер доказал два первых положения: все живые организмы построены из однотипных химических макромолекул, универсальной единицей биологической энергии служит АТФ, в основе физиологического разнообразия живых существ лежит несколько основных метаболических путей. Что касается последнего положения, то А. Клюйвер изучением этой проблемы не занимался. Единство системы передачи генетической информации у всех клеточных типов жизни было установлено позднее. В настоящее время мы пока не знаем исключений, которые ставили бы под сомнение теорию биохимического единства жизни. С начала XX в. продолжается дальнейшая дифференциация микробиологии. От нее отпочковываются новые научные дисциплины (вирусология, микология) со своими объектами исследования, выделяются направления, различающиеся задачами исследования (общая микробиология, техническая, сельскохозяйственная, медицинская, генетика микроорганизмов). Перечисление достижений микробиологии XX в. в кратком очерке представляется необычайно сложным, что и привело нас к заключению не делать этого. Фактически все последующее изложение материала (и то достаточно краткое и не затрагивающее всех направлений современной микробиологии) есть попытка охарактеризовать достижения в некоторых областях микробиологии на современном этапе. Вклад отдельных исследователей в решение определенных микробиологических проблем мы старались отмечать по мере изложения материала. Итак, мы коротко остановились на истории микробиологии, особо подчеркнув роль исследователей, работы которых имели этапное значение не только для развития микробиологии, но и биологии в целом: А. ван Левенгук — открытие микромира, Л. Пастер — выяснение роли микроорганизмов в природе, С. Н. Виноградский и М. Бейеринк — утверждение многообразия форм жизни в микромире, А. Клюйвер и К. ван Ниль — доказательство биохимического единства жизни. Глава 2. Положение микроорганизмов в системе живого мира Начиная с Аристотеля (384—322 до н. э.), которому принадлежит первая попытка систематизировать накопленные к тому времени сведения об организмах, биологи делили живой мир на два царства — растений и животных. А. ван Левенгук, открывший мир микроскопических живых существ, был убежден в том, что они являются "маленькими живыми зверушками". С этого времени и до XIX в. все открываемые микроорганизмы рассматривали как мельчайшие существа животной природы. Во второй половине XIX в. немецкий биолог Э. Геккель (Е. Haeckel, 1834—1919) приходит к заключению, что микроорганизмы настолько существенно отличаются как от царства животных, так и от царства растений, что не укладываются ни в одно из этих подразделений. Э. Геккель предложил выделить все микроорганизмы, у которых отсутствует дифференцировка на органы и ткани (простейшие, водоросли, грибы, бактерии), в отдельное царство Protista (протисты, первосущества)3, включив в него организмы, во многих отношениях занимающие промежуточное положение между растениями и животными. Термин "protista" и сейчас применим для обозначения объектов, исследуемых микробиологами. 3 По-гречески protos — самый простой. В настоящее время нет единства во взглядах на общую систему живого мира. Согласно одной из точек зрения попытки уложить все существующее разнообразие организмов в жесткую схему нецелесообразны, поскольку любые искусственные разграничения нарушают естественные связи между организмами. Следствие этого — тенденция наименьшего дробления органического мира, признание целесообразности выделения только двух царств: Plantae (растения) и Animalia (животные). Эта точка зрения акцентирует внимание на чертах сходства, соединяющих различные типы организмов, и на существовании переходов от одной группы организмов к другой в процессе эволюции. В соответствии с противоположным представлением разделение всех живых форм на крупные таксоны (царства) наиболее полно отражает существующее многообразие типов жизни, подчеркивая эту сторону живого мира. Согласно первой точке зрения все микроорганизмы рассматриваются как примитивные растения или животные и соответственно входят в состав царств Plantae или Animalia. Согласно второй — микроорганизмы могут претендовать на уникальное место в иерархии живых форм, что впервые понял Э. Геккель. Дальнейшее изучение геккелевских "первосуществ" выявило неоднородность этой группы. Тогда же стало ясно, что понятие "микроорганизм" не имеет таксономического смысла. Оно объединяет организмы по признаку их малых (как правило, видимых только с помощью соответствующих приборов) размеров и связанных с этим специфических методов изучения. Данные о различии в строении клеток микроорганизмов, входящих в группу Protista, начали накапливаться с конца XIX в, Это повлекло за собой деление группы на высшие и низшие протисты. К высшим протистам стали относить микроскопических животных (простейших), микроскопические водоросли (кроме сине-зеленых) и микроскопические грибы (плесени, дрожжи), к низшим — все бактерии и сине-зеленые водоросли (последние чаще называют теперь цианобактериями). Деление на высшие и низшие протисты происходило в соответствии с двумя выявленными типами клеточной организации — эукариотной и прокариотной4. Высшие протисты имеют эукариотное строение клеток, т. е. являются эукариотами, низшие — прокариотное. 4 Термины были предложены в 30-х гг. XX в. протозоологом Э. Шаттоном (Е. Chatton). Обоснование того, что прокариотный и эукариотный типы клеточной организации являются наиболее существенной границей, разделяющей все клеточные формы жизни, связано с работами Р. Стейниера (R. Stanier, 1916—1982) и К. ван Ниля, относящимися к 60-м гг. Поясним разницу между прокариотами и эукариотами. Клетка — это кусочек цитоплазмы, отграниченный мембраной. Последняя под электронным микроскопом имеет характерную ультраструктуру: два электронно-плотных слоя каждый толщиной 2,5—3,0 нм, разделенных электронно-прозрачным промежутком. Такие мембраны получили название элементарных. Обязательными химическими компонентами каждой клетки являются два вида нуклеиновых кислот (ДНК и РНК), белки, липиды, углеводы. Цитоплазма и элементарная мембрана, окружающая ее, — непременные и обязательные структурные элементы клетки. Это то, что лежит в основе строения всех без исключения клеток. Изучение тонкой структуры выявило существенные различия в строении клеток прокариот (бактерий и цианобактерий) и эукариот (остальные макро- и микроорганизмы). Прокариотная клетка отличается тем, что имеет одну внутреннюю полость, образуемую элементарной мембраной, называемой клеточной, или цитоплазматической (ЦПМ). У подавляющего большинства прокариот ЦПМ — единственная мембрана, обнаруживаемая в клетке. В эукариотных клетках в отличие от прокариотных есть вторичные полости. Ядерная мембрана, отграничивающая ДНК от остальной цитоплазмы, формирует вторичную полость. Наружные мембраны хлоропластов и митохондрий, окружающие заключенные в них функционально специализированные мембраны, играют аналогичную роль. Клеточные структуры, ограниченные элементарными мембранами и выполняющие в клетке определенные функции, получили название органелл. Ядро, митохондрий, хлоропласты — это клеточные органеллы. В эукариотных клетках помимо перечисленных выше есть и другие органеллы. В клетках прокариот органеллы, типичные для эукариот, отсутствуют. Ядерная ДНК у них не отделена от цитоплазмы мембраной. В цитоплазме находятся функционально специализированные структуры, но они не изолированы от цитоплазмы с помощью мембран и, следовательно, не образуют замкнутых полостей. Эти структуры могут быть сформированы и мембранами, но последние не замкнуты и, как правило, обнаруживают тесную связь с ЦПМ, являясь результатом ее локального внутриклеточного разрастания. В клетках прокариот есть также образования, окруженные особой мембраной, имеющей иное по сравнению с элементарной строение и химический состав. Таким образом, основное различие между двумя типами клеток — существование в эукариотной клетке вторичных полостей, сформированных с участием элементарных мембран. Сопоставление некоторых черт клеточной организации прокариотных и эукариотных организмов представлено в табл. 1. Таблица (находится в справочных материалах нашего сайта) 1. Сопоставление некоторых черт прокариотной и эукариотной клеточной организации Далее: Влагалище прямой мышцы живота. Глава VIII. Снабжение нервами сосудов мягкой мозговой оболочки мозга. Глава седьмая. Глава 27. Осмотр трупа на месте его обнаружения. Список литературы. Чудо человеческой речи. Божественное омоложение головы. Главная > Публикации 0.001 |