Главная >  Публикации 

 

1.1.2 Сосудистая система



Элементы микроциркуляторного русла имеют пространственную ориентацию. Артериолы располагаются перпендикулярно к мышечным волокнам, прекапилляры, капилляры, посткапилляры и венулы - параллельно, а межкапиллярные анастомозы перпендикулярно к ним. Диаметр артериол составляет (10 - 15) мкм, венул - (15 - 20) мкм, прекапилляров, капилляров и посткапилляров - (4 - 6) мкм. Длина капиллярных сегментов в среднем в 10 раз превышает диаметр. На прекапилляры, капилляры и посткапилляры приходится 6-9 % объема миокарда. Остальные элементы микроциркуляторного русла составляют не более 2 % его объема. Объем нервного компонента равен 1/20 объема сосудистого компонента.

Заместительная функция тканевых структур сердца выполняется пролиферативным пулом соединительно-тканных клеток, которые в интактном миокарде представлены фиброцитами и фибробластами, эндотелиальными, гладкомышечными, жировыми, плазматическими, тучными и другими клетками. В физиологических условиях их число невелико. Помимо волокон, сосудов, нервных волокон и клеток в состав опорно-трофического остова входит также основное вещество, образованное, главным образом, гликозаминогликанами.

1.1.2 Сосудистая система

Кровеносные сосуды - отходящие от сердца (артериальные) и притекающие к нему (венозные) сосуды со связывающим их микроциркуляторным руслом. Отходящие от желудочков сердца сосуды начинаются одним стволом (легочная артерия и аорта, соответственно), подвергающиеся на своем протяжении разветвлениям (наиболее часто дихотомическим) до мелких ветвей, переходящих в микроциркуляторное русло. Последнее представлено сосудами притока (артериолами), оттока (венулами), а также пространственными сетями прекапилляров, капилляров и посткапилляров. Именно здесь осуществляется обмен крови с тканью исполнительных органов 35. Венулы, сливаясь, образуют все более крупные сосуды, которые в итоге через ограниченное число ветвей (две для правого предсердия и четыре для левого ) впадают в предсердия. BCC начинается аортой, диаметр корня которой также, как и размеры сердца, определяется конституциональными и иными факторами, колеблясь у здоровых от 15 до 30 мм. Аорта дает начало артериальным сосудам. Различают восходящий отдел, дугу и нисходящий отдел аорты. Начальная часть восходящего отдела аорты расширена и называется луковицей. В стенке луковицы имеются три пазухи, соответствующие трем полулунным лепесткам расположенного здесь аортального клапана. Из правой и левой пазух луковицы отходят одноименные венечные артерии, осуществляющие кровоснабжение сердца. Диаметр венечных артерий в среднем в 10 раз меньше диаметра аорты. От дуги аорты отходят крупные сосуды, обеспечивающие кровоснабжение верхней части туловища - плечеголовной ствол, разделяющийся на правые подключичную и общую сонную артерии, левые сонная и подключичная артерии. Подключичные артерии кровоснабжают верхние конечности, сонные - голову и шею. От грудного отдела аорты отходят сосуды, кровоснабжающие грудную стенку и органы грудной полости, от брюшного - стенки и органы брюшной полости, а также крупные ветви для кровоснабжения дна туловища и нижних конечностей. Стенки крупных артерий имеют три основные оболочки: внутреннюю, среднюю и наружную, соответствующие эндокарду, миокарду и эпикарду сердца. Внутреннюю оболочку образуют эндотелий, подэндотелиальный слой и внутренняя эластическая мембрана. Эндотелий представлен соответствующими клетками. Подэндотелиальный слой состоит из тонких эластических и коллагеновых волокон, а также соединительно-тканных клеток и основного вещества, внутренняя эластическая мембрана - из эластических волокон. Средняя оболочка образована вложенными друг в друга концентрическими эластическими мембранами. В стенке аорты насчитывается до 40-60 таких мембран, пространства между которыми заполнены основным веществом, клетками соединительной ткани и характерными для сосудистой системы гладкомышечными клетками. Прикрепляясь на протяжении к эластическим мембранам, они обеспечивают изменение диаметра сосудов при работе сердца. Форма гладкомышечных клеток веретенообразная; их сократительный аппарат состоит из тонких - актиновых и толстых - миозиновых миофиламентов, причем на один толстый миофиламент приходится около 10 тонких. На протяжении аорты и отходящих от нее сосудов по мере разветвлений уменьшается число эластических мембран и возрастает доля мышечных волокон. В отличие от более близких к аорте разветвлений, называемых артериями эластического типа, на некотором удалении от нее стенки артерий представлены преимущественно гладкомышечными клетками - артерии мышечного типа. Наружная оболочка артерий образована соединительной тканью.

Разветвляясь, истончаясь и все более увеличиваясь количественно артерии в итоге переходят в микроциркуляторное русло, сосуды которого изнутри выстланы эндотелием. По мере перехода от артериол к капиллярам у них все более уменьшаются средний и наружный слои. Вначале - это группы мышечных волокон, отдельные мышечные волокна, затем - просто соединительная ткань, относящаяся одновременно к сосудам микроциркуляторного русла и к соединительной ткани органов, в которых оно расположено. Диаметры капилляров микроциркуляторного русла и форменных элементов крови близки, что создает благоприятные условия для контактирования между их поверхностями и способствует обмену между кровью микроциркуляторного русла и тканью.

Вены BCC собирают кровь из микроциркуляторного русла органов и тканей и постепенно, сливаясь друг с другом, образуют все более крупные ветви, конечными коллекторами которых являются верхняя и нижняя полые вены, впадающие в RA. Только вены сердца самостоятельно открываются в правое сердце. Верхняя полая вена собирает кровь от венозных сосудов головы, шеи, верхних конечностей и стенок туловища, а нижняя - от нижних конечностей, стенок и органов дна туловища, органов и стенок брюшной полости. Обе вены, в отличие от впадающих в них сосудов, клапанов не имеют. Клапаны есть в большинстве венозных сосудов с диаметром более 2 мм и представляют собой складки стенок. Слоистое строение стенок венозных сосудов выражено гораздо слабее, чем артериальных, и границы между слоями провести трудно. Клеточные элементы соединительной ткани вен, артерий и миокарда одинаковы.

Малый круг кровообращения начинается легочным стволом, анатомическое строение которого отвечает строению аорты. Различия между начальными отделами легочного ствола и аорты сводятся к размерам, включая толщину стенок, которая у легочного ствола меньше в среднем на 1/5. Легочный ствол разделяется на правую и левую легочные артерии, которые дают начало артериальному руслу легких. Систематически разветвляясь, артерии переходят в артериолы, переходящие в микроциркуляторное русло. Плотность упаковки капилляров микроциркуляторного русла малого круга в 2 раза выше, чем большого (его объем составляет в среднем 0,8 объема дыхательной части ткани легких), что способствует эффективности газообмена между кровью капилляров и воздухом. Кровь микроциркуляторного русла собирается сливающимися и постепенно укрупняющимися венозными сосудами легких. От каждого легкого формируются две легочные вены, впадающие в LA.

Легочная артерия и ее крупные ветви относятся к сосудам эластического типа, затем они переходят в артерии эластомышечного и, наконец, - мышечного типа. В отличие от вен BCC легочные вены имеют более развитый средний слой с большим количеством соединительнотканных волокон и более сильный мышечный слой в особенности в местах впадения вен в LA, где формируются жомы, регулирующие их гемодинамические отношения с LA. В частности, закрывая просвет вен в систолу предсердия, они предупреждают ретроградное поступление в них крови.

Наряду с сосудами системы легочной артерии в легких существуют бронхиальные сосуды BCC, обеспечивающие поступление в орган крови для трофических функций, образующих его тканей.

Лимфатические сосуды идут параллельно венозным, сливаясь во все более крупные стволы, которые впадают в ветви терминальных венозных сосудов BCC. По ходу лимфатических сосудов на определенных уровнях имеются лимфатические узлы, выполняющие контрольные для протекающих в них веществ функции и поставляющие в кровь, а через нее и всем компартментам, иммунные органы (иммунные клетки, и др.).

Иннервация кровеносных сосудов происходит в основном за счет ветвей симпатических нервов. Нервные волокна образуют разветвленные сплетения в сосудистой стенке, чем обеспечивается эффективная регуляция их тонуса, а значит регуляция кровотока в сосудах на разных уровнях и в различных отделах организма.

1.1.3 Иннервация системы кровообращения

Иннервация сердца осуществляется ветвями шейного и грудного отделов правого и левого симпатических стволов, а также блуждающих нервов. Широко развитая внутрисердечная нервная сеть обеспечивает функциональные связи между камерами сердца.

Автономная (вегетативная, висцеральная) нервная система (ANS) есть часть нервной системы, осуществляющая регуляторное обеспечение функций внутренних органов, кровеносных и лимфатических сосудов, гладких и, частично, поперечнополосатых мышц. ANS имеет многоуровневую иерархическую организацию с многосторонними нелинейными внутри- и межуровневыми прямыми и обратными связями как в ее пределах, так и с центральной и соматической нервной системой.

Самый высокий уровень структурной организации ANS - высшие вегетативные центры - находится в коре больших полушарий. ANS имеет представительство своих функций в моторной, премоторной и орбитальной зонах коры. Следующий ниже уровень - гипоталамус, который связан как с корой, так и с нижележащими структурами ANS, а именно, - вегетативными центрами ствола головного и спинного мозга.

Вегетативные центры ствола головного мозга - мезэнцефатический и бульбарный. Бульбарный в числе других дает блуждающие нервы, которые входят в состав парасимпатической нервной системы (PSNS). Вегетативные центры спинного мозга - тораколюмбальный и сакральный. Сердце непосредственно иннервируется блуждающим нервом из бульбарного и симпатическими нервами из тораколюмбального вегетативного центра. Вегетативные центры тораколюмбального и сакрального отделов позвоночника расположены непосредственно в его боковых рогах и формируют, первый, начальную часть симпатической нервной системы (SNS), второй - сакральный отдел PSNS. Они дают волокна, которые выходят из позвоночника в составе передних корешков спинномозговых нервов.

Моторные импульсы из стволовых и спинномозговых вегетативных центров достигают исполнительных органов по двухнейронному пути. Первые нейроны расположены в самих центрах, вторые - находятся в периферических вегетативных узлах. Отростки первых нейронов называются преганглионарными и оканчиваются на вторых нейронах. Отростки вторых нейронов идут к исполнительным органам и называются постганглионарными. Периферические вегетативные узлы PSNS располагаются или в непосредственной близости к исполнительным органам, или прямо в их стенке. Что касается SNS, периферические вегетативные узлы представлены цепочками по обе стороны от позвоночного столба, формируя, так называемые правый и левый пограничные симпатические стволы. Именно с этого уровня осуществляется симпатическая иннервация исполнительных органов, включая сердце.

Парасимпатическая иннервация по распространенности существенно уступает симпатической. Часть органов имеет двойную иннервацию, другая - лишь симпатическую.

SNS входит в состав симпатоадреналовой системы, которая дополнительно включает в себя мозговой слой надпочечников и другие скопления хромаффинных клеток. Большое их количество содержится и в сердце. В мозговом слое надпочечников имеются норадреналин- и адреналинобразующие клетки.

1.2 Физиология

Система кровообращения едина не только в структурном, но и функциональном отношениях. Физиологию, как и анатомию, естественно рассматривать по компартментам.

1.2.1 Физиология сердца

Основной функцией сердца является обеспечение кровообращения сообщением крови кинетической энергии. Сердце поэтому часто ассоциируют с насосом. Его отличают исключительно высокие производительность, скорость и гладкость переходных процессов, запас прочности и постоянное обновление тканей. Нужны экстраординарные факторы, чтобы нарушить устойчивость функционирования этого органа.

1.2.1.1 Мышечное сокращение

Основа работы сердца - мышечное сокращение, порождаемое актомиозиновым сопряжением (процессами, связанными с образованием и распадом актомиозиновых мостиков). При сокращении материал миокарда деформируется, сжимаясь и растягиваясь. Возникающие в результате (активного) сокращения кардиомиоцитов деформации являются активными в отличие от вызванных внешними силами 25. Например, давлением крови при наполнении камер сердца в диастолу.

Актомиозиновое сопряжение и порождаемые им активные деформации составляют свойство сократимости миокарда. Это свойство функционально взаимосвязано с другими - возбудимостью, автоматизмом и хронотропией.

Возбудимость - способность кардиомиоцитов генерировать в ответ на раздражение электрические потенциалы действия. С электрическим потенциалом действия связана деполяризация мембран кардиомиоцитов (фаза деполяризации). Процесс деполяризации крайне быстрый. Электрический потенциал почти мгновенно изменяется от исходного (потенциал покоя) до максимального (потенциал действия). После некоторого плато нарастающими темпами электрический потенциал возвращается до исходного уровня. Этот процесс носит название реполяризации (фаза реполяризации). Физиологическим раздражителем для кардиомиоцитов служат электрические импульсы, генерируемые в синусовом узле и распространяющиеся по миокарду волокнами проводящей системы.

Автоматизм - свойство кардиомиоцитов генерировать автоволновые электрические импульсы, под действием которых (будучи изолированными) они могут находиться в состоянии ритмического сокращения. Наиболее развито это свойство в кардиомиоцитах проводящей системы, прежде всего, синоатриального и атриовентрикулярного узлов. Когда в результате деполяризации (спонтанной) трансмембранный потенциал достигает порогового, клетками синоатриального узла генерируются потенциалы действия. С развитием потенциала действия в каждом новом кардиомиоците волна деполяризации распространяется на соседние с ним, невозбужденные. Возникающий в этих новых кардиомиоцитах трансмембранный потенциал достигает порогового уровня и также реализуется в потенциале действия. Происходит лавинообразное распространение потенциала действия. По стенками камерам сердца, в соответствии с топологией проводящей системы.

Мышечное сокращение в сердце - хорошо организованный периодический процесс. Функция периодической (хронотропной) организации этого процесса обеспечивается проводящей системой.

В фазу деполяризации и на плато реполяризации миокард не отвечает на внешнее электрическое раздражение (абсолютный рефрактерный период). Чем позднее от плато возникает внешнее электрическое раздражение, тем больше возбудимость (относительный рефрактерный период). Рассмотренные свойства миокарда проявляются на уровнях от единичных кардиомиоцитов до сердца в целом. На уровне сердца временная организация мышечного сокращения трансформируется в пространственно-временную. Пространственно-временная же является основой скоординированной биомеханики камер органа, с которой и ассоциируется его структурное (строения и функции) единство.

1.2.1.2 Механизм мышечного сокращения

Связь между электрическими импульсами проводящей системы сердца и активными деформациями кардиомиоцитов (и всего миокарда) поддерживается потоками ионов кальция. При возбуждении кардиомиоцитов и распространении по ним волн деполяризации происходят конформационные изменения сарколеммы. При этом ее проницаемость для ионов калия, натрия и кальция возрастает. С поступлением ионов натрия в клетку и выходом из нее калия формируется трансмембранный потенциал действия, одно из проявлений которого - открытие кальциевых каналов.

Кальциевые каналы представляют собой особую разновидность белков, находящихся во взвешенном состоянии в липидном бислойном матриксе клеточных мембран и имеющих заполненные цитоплазмой каналы. Различают быстрые и медленные кальциевые каналы с соответствующими скоростями транспортирования ионов. Вход в каналы открывается и блокируется в разных диапазонах уровня потенциала. Быстрые каналы открываются в нулевую фазу потенциала действия, медленные - во время его пика. Связанная с ними кинетика внутриклеточного кальция определяет актомиозиновое сопряжение и порождаемые им деформации кардиомиоцитов. Медленные каналы обладают более низкой возбудимостью. Между разными ионами устанавливаются конкурентные взаимоотношения.

Кальций, поступающий в кардиомиоциты по медленным каналам в пиковую фазу потенциала действия, способствует высвобождению собственного кальция кардиомиоцитов, накапливаемого в структурах саркоплазматического ретикулумума, митохондрий и других органоидов. Резкому увеличению концентрации ионов кальция на активных местах актомиозиновых комплексов способствуют конформационные изменения тропонинового комплекса. В результате актиновые нити все более входят в миозиновые, актомиозиновое волокно укорачивается и в кардиомиоците развиваются активные деформации. Этот процесс является энергозависимым и обеспечивается ATP. Так происходит трансформация химической энергии в энергию активных деформаций кардиомиоцитов.

Обратный процесс расхождения актомиозиновых нитей, приводящий к уменьшению активных деформаций кардиомиоцитов, связан с удалением от их активных мест ионов кальция через быстрые каналы. Он также обеспечивается ATP 39.

Сила мышечного сокращения, развиваемая саркомерами кардиомиоцитов в период сокращения, определяется количеством открывшихся актомиозиновых мостиков в период расслабления. Оба периода отвечают, соответственно, систоле и диастоле организованного миокарда сердца. На некотором интервале открывающихся мостиков до nкрит с увеличением в период расслабления их числа сила мышечного сокращения в период сокращения возрастает и после него падает. Эта зависимость носит название закона Франка-Старлинга.

ATP образуется в митохондриях в ходе биохимических превращений жирных кислот, глюкозы и аминокислот, поступающих в кардиомиоциты через кровь. Эти превращения осуществляются в основном путем аэробного окисления и фосфорилирования. Как и ионы кальция, к активным местам актомиозиновых комплексов ATP доставляется специальными транспортными системами.

Обмен ионов натрия и калия, определяющий кальциевую регуляцию актомиозиного сопряжения, называется натрий-калиевым насосом. Он обеспечивается аденозинтрифосфатазой мембран кардиомиоцитов, которая сама регулируется тонкими биохимическими реакциями. Натрий-калиевый насос поддерживает на стабильном уровне высокие значения потенциала покоя, что имеет решающее значение в обеспечении функции сократимости миокарда. Для его поддержания необходимо, чтобы выходящий из кардиомиоцита калиевый ток был равен по величине и противоположен по направлению натриевому. Превышение входящего тока над выходящим предопределяет величину потенциала действия и скорость его нарастания, чем регулируются потоки кальция и, в итоге, процесс актомиозинового сопряжения.

Промежуток времени, в течение которого кардиомиоцит не способен генерировать распространяющееся возбуждение в ответ на раздражение любой силы, называется эффективным рефрактерным периодом (1.2.1). Этот период отвечает фазам быстрой деполяризации, начальной быстрой реполяризации, "плато" и началу фазы конечной реполяризации потенциала действия. Фаза быстрой деполяризации характеризуется максимальной скоростью активации натриевых каналов. С наступающей вслед за этим их быстрой инактивацией (фазы начальной быстрой реполяризации и "плато") кардиомиоцит находится в состоянии абсолютной рефрактерности, абсолютно не реагируя на любой интенсивности стимулы. В начале фазы конечной реполяризации потенциала действия некоторые натриевые каналы возвращаются в исходное состояние и соответствующие кардиомиоцивы в это время уже способны давать реакции на раздражение. Процесс этот, естественно, носит локальный характер. Когда в процессе реполяризации трансмембранный потенциал достигает 60 мВ, становится возможным развитие распространяющегося возбуждения по миокарду соответствующих камер сердца. Однако потенциал действия возникает только в ответ на более сильные (сверхпороговые) раздражители, причем скорость распространения возбуждения по миокарду снижена. Этот промежуток времени называется относительным рефрактерным периодом и соответствует второй половине фазы конечной реполяризации потенциала действия. Рефрактерность также нормальную последовательность распространения возбуждения в сердце и электрическую стабильность миокарда.В заключительной стадии каждого цикла возбуждения существует короткий интервал времени, когда реполяризующиеся кардиомиоциты выходят из состояния рефрактерности и их проводимость восстанавливается. Миокард становится неоднородным по рефрактерности и теряет электрическую стабильность. Этот интервал получил название уязвимого периода. Он - источник и непосредственная причина многих эктопически й нарушений ритма сердца.

Далее:

 

3.24. Инфекционная больница.

Мышцы предплечья.

Читая ваши письма.

Болезнь уиппла.

7.3. Методика «рисунок семьи».

Пациент как объект контрпереноса.

Глава 41. Материнство против профессиональной карьеры.

 

Главная >  Публикации 


0.0014