Главная >  Публикации 

 

Глава V. Мероприятия по профилактике заражений инфекционными заболеваниями через воду.



Сравнение бактерицидного и вирулицидного действия ряда хлорсодержащих препаратов дало возможность расположить их в следую­щем порядке: газообразный хлор - натриевая соль дихлоризоциануровой кислоты - хлорная известь - хлорированный тринатрийфосфатхлорамин. (Гирин В.Н. с соавт. 1981). Исследования, проведенные D.Berman et al. (1988) показали, что эффективность хлорирования связана с рядом факторов: размерами частиц нечистот в сточных водах (мелкие частицы инактивируются быстрее), рН стоков. Монохлорамин был менее эффективен, чем газообразный хлор.

Наряду с хлорацией сточных вод, которая является самым распространенным методом их обеззараживания, имеются сообщения и о применении других методов. Так Н.А.Арбузов с соавт. (1976) показали, что для полного обеззараживания сточных вод действием ионизирующего излучения необходимо ПД 20 крад; для уничтожения кишечной палочки в биологически очищенных стоках надо ПД 50 крад, для инактивации колифагов 200-300 крад.

С.Р.Головина с соавт. (1978) получили хороший эффект при обезза­раживании стоков животноводческих ферм методом электрокоагуляции.  А.М.Коленов и Л.С.Глаголев (1978) рекомендуют установку для термического обеззараживания сточных вод, в которой сначала прово­дится их подогрев при 80-90°С, а затем обработка при 120-130°С.

Poffe с соавт. (1978) изучали обеззараживающее действие перуксусной и пероксимоносернокислой кислот. Перуксусная кислота в дозе 10 ррм за 5 мин. полностью освобождала сточные воды от энтеробактерий и стрептококков группы Д, на 99% уменьшилось количество колиформ и на 96% - микрококков. Однако, концентрация спорообразу­ющих микробов снижалась только на 10%. Пероксимоносернокислая кислота оказалась слабым дезинфектантом. Медленный эффект давала обработка животноводческих и хозяйственно-фекальных стоков путем альголизации (Н.М.Ятулена, 1977).

С.Н.Черкинский с соавт. (1980) сравнивает доочистку сточных вод хлорированием и озонированием. Отрицательные свойства хлорирова­ния: опасная мутагенность, токсическое действие на организм. Поэтому, хлорированные стоки нельзя использовать для полива растений, нельзя спускать в рекреационные водоемы. Озонирование лишено этих отри­цательных свойств, но для достижения бактерицидного эффекта необ­ходима доза озона 7 мг/л с экспозицией 125 минут. С хорошим эф­фектом можно сочетать озонирование с хлорированием.

Выше речь шла об освобождении сточных вод от бактериальной флоры. Если этот вопрос в целом можно считать достаточно успешно решенным, то удаление из сточных вод вирусной флоры является бо­лее трудной задачей.

Установлено, что механическая и биологическая очистка сточных вод, хотя и уменьшает количество находящихся там вирусов, но не обеспечивает полного их отмирания. По данным Л.В.Григорьевой и Г.И.Корчак (1976) в 26% проб сточных вод, прошедших очистку со­держались вирусы, хотя концентрация их была в 2 раза меньше чем до очистки. Г.А.Багдасарьян и В.А.Казанцева (1965) выделяли энтеровирусы из сточных вод прошедших станции аэрации, хотя их титр был ниже, чем до обработки. Е.И.Гончарук, Л.В.Григорьева, Т.В.Бей и др. (1970) изучали возможность освобождения сточных вод от энтеровирусов при обработке стоков в циркуляционно-окислительном канале. Установлено, что в сточной жидкости энтеровирусы сохранялись 48 часов, но в иле 5 суток. Не удавалось добиться полного освобождения сточной жидкости от вирусов на аэро-окислителях радиального типа, на биофильтрах II на сооружениях подземной фильтрации, хотя концентрация вирусов уменьшилась очень значительно.

По данным Р.А.Дмитриевой с соавт. (1988) биологическая очистка и доочистка снижали на 5-6 порядков содержание бактерий группы кишечной палочки; содержание колифагов и энтеровирусов снижали на 2-3 порядка. В принципе аналогичные результаты получили В.П.Вуткарев с соавт. (1982).

Таким образом, для полного освобождения стоков от вирусов био­логической очистки недостаточно и необходимо прибегать к обеззара­живанию (Л.В.Григорьева и Г.И.Корчак, 1976). Это положение в полной мере относится и к осадкам, где вирусы сохраняются дольше, чем в жидкости. Аналогичные результаты дали и исследования зарубежных авторов - Pascoe (1957) Clarke с соавт. (1959), Clarke с соавт. (1961), Shwartzbrad с соавт. (1973), Safferman, Morris (1976), Danigaard Larsen с соавт. (1977), Luy с соавт. (1977), Glass с соавт. (1980). Такие приемы как коагуляция хлорным железом, аэрация сточных вод, анаэробное сбраживание, адсорбция на активированном угле и обезвоживание цетрифугированием не дали большого эффекта. Лучшие результаты полу­чены при прибавлении активного ила, фильтрования с коагуляцией и флокуляцией, модифицированной аэрации и денитрификации -количе­ство вирусов в некоторых случаях уменьшилось более, чем на 99%, но полного исчезновения вирусов не происходило.

Для обеззараживания от вирусов полностью биологически очищен­ных сточных вод применяется хлор в дозе 10мг/л, для стоков про­шедших только механическую очистку 30мг/л. Экспозиция в обоих случаях 30 минут. По Е.И.Гончарук с соавт. (1976) надежное обезза­раживание может быть достигнуто при дозе 5 мг/л за 2 часа, при до­зе 10мг/л за 30мин. Bush a. Sherwood (1966), Brooning a. Zarek (1967) считают, что показателем успешной очистки сточных вод от вирусов является остаточная концентрация хлора 05 мг/л.

Culp (1971) указывает, что дезинфекция сточных вод прошедших осветление эффективнее, чем неосветленных стоков. По Chahdhuri, Englebrecht (1970), катионовые полиэлектролиты примафлок и катофлок устраняют 98-99% вирусов. По Gevaudan с соавт. (1971), Pavoni с соавт. (1972) для обеззараживания сточных вод в отношении вирусов может быть использован озон в дозе 15мг/л при 5 минутной экспози­ции.

На хороший вирулецидный эффект электролиза  указывают Е.И.Гончарук и В.А.Прокопов (1973).

Следует обратить внимание на то, что устойчивость различных ви­русов к дезоагентам неодинакова. В частности аденовирусы более чувствительны к хлору, чем энтеровирусы (Л.В.Григорьева и Г.Л.Корчак, 1976).

Отдельно следует остановиться на обработке сточных вод инфекци­онных больниц. Считается, что количество сточных вод на одного больного составляет 250-500л в сутки. По мнению специалистов ФРГ (статья в Gesunndh wes u Desinfeck 1962, 6, стр. 90-92) химическая де­зинфекция целесообразна при обеззараживании сточных вод отдельно расположенных лечебных учреждений, при спуске же этих вод в об­щую канализацию следует прибегать к термической обработке путем нагревания до 100-110°С. Этот метод обработки, как перспективный рекомендуется также Е.И.Гончаруком и В.А.Прокоповым (1976), кото­рые указывают также на невозможность применения радиационного и электролизного методов. В.А.Прокопов (1976) получил положительный результат при следующей системе обработки сточных вод городской инфекционной больницы: очистные сооружения состояли из решеток-дробилок, песколовки, двухярусных септиков, ершового смесителя, контактного резервуара и хлораторной установки. Доза активного хлора составляла 30 мг/л, экспозиция 60 минут, остаточный хлор не менее 2 мг/л. Осадок обрабатывался паром в дегельминтизаторе. Автор, указывает, что если в городских сточных водах соотношение кишеч­ной палочки к патогенным микробам кишечной группы составляет 1:0.001 - 1:0.000001, то в больничных водах это соотношение 1:0.01 -1:001.

М.Я.Мельникова с соавт. (1979) сравнивали эффективность обеззара­живания сточных вод следующими тремя методами: а) хлорирование экскрементов в отделениях; б) хлорирование в отделениях + повторная обработка в отстойниках; в) обработка на очистных сооружениях. На­илучшие результаты давал второй из упомянутых методов.

Особую заботу представляет обработка сточных вод туберкулезных больниц, учитывая большую резистентность возбудителя этого заболе­вания. По Krebs (1957) механическая очистка уменьшает количество возбудителя в сточных водах всего на 10%, тогда как биологическая очистка на 90-95%. Е.И.Гончарук и Я.Я.Деревянко (1976) указывают, что механическая очистка с последующим хлорированием не всегда обе­спечивает гибель возбудителя туберкулеза в сточных водах, хотя другие показатели (коли-титр, микробное число, остаточных хлор) го­ворили о хорошем качестве обеззараживания. Наилучший результат дают песчано-гравийные фильтры. В неканализационных населенных пунктах эти стоки должны подвергаться двухступенчатой биологической очистке. На первой ступени проводится “суммарное” окисление сточных вод, на второй ступени - сточные воды проходят сооружения наземной и подземной фильтрации. Ил и осадок обрабатываются в дегельминтизаторах.

Указывается на необходимость обеззараживания стоков туберкулез­ных  больниц повышенными  дозами окислителей (Е.И.Гончарук В.А Прокопов, 1976).

Особый комплекс мероприятий проводится в отношении воды пла­вательных бассейнов. В.Н.Балашов - (1975) рекомендует следующую систему мероприятий на этих объектах:

- перерывы между сеансами не менее 30 мин,

- тщательная душевая обработка перед купанием в бассейне;

- бактериологический контроль воды 1 раз в неделю;

- полный спуск воды и дезинфекция ванны 1 раз в месяц в бас­сейнах для взрослых и 1 раз в 10 дней для детей;

- промывка фильтров 1 раз в сутки;

- определение активного хлора каждый час.

При всей важности комплекса мероприятий по охране водоисточ­ников от загрязнения, для чего и проводится очистка и обеззараживание стоков, организация зон охраны вокруг водоисточников, приходит­ся прибегать к комплексу мер по очистке и обеззараживанию воды, что имеет особо важное значение, если используется вода поверхно­стных водоемов. Обработка подаваемой в сеть воды имеет цель: 1) улучшение органолептических свойств воды; 2) обеспечение ее эпидемиологической безопасности; 3) кондиционирование ионного состава воды. Для предупреждения передачи через воду инфекционных заболеваний непосредственное значение имеет обеззараживание воды, но ме­ры проводимые по улучшению органолептических свойств воды, па­раллельно оказывают весьма существенное влияние и на ее микробную зараженность. Поэтому, говоря о мероприятиях по обеспечению эпиде­миологической безопасности воды, следует начать с кратких данных о предварительной очистке воды, коагулированию примесей и осветлению воды - процессов предшествующих собственно обеззараживанию.

Для задержки крупных примесей, которые могут содержаться в во­де, применяют барабанные сетки с размером ячейки 0.5х0.5мм, а для очистки от планктона микрофильтры с размерами ячеек 0.04х0.04мм. Таким путем полностью задерживается зоопланктон и на 60-90% фи­топланктон (Г.П.Зарубин И.В.Новиков, 1976). После такой механи­ческой очистки вода подвергается отстаиванию и филы рации. Эти два процесса могут осуществляться последовательно, и тогда говорят о двухступенчатой обработке воды, или одновременно на одной и той же установке - одноступенчатая обработка воды.

Отстаивание воды может проводиться в отстойниках разных типов (“горизонтальные”, “вертикальные”, “радиальные”, “осветители со взвешенным осадком”). Фильтрация воды проводится либо через медленные фильтры (со скоростью 0.1-0.3 м/ч, где образуется биологическая пленка), либо через скоростные фильтры со скоростью 5-10м/ч. В качестве фильтрующих материалов используется песок или уголь.

Одноступенчатая обработка воды проводится на т. н. “контактных осветителях”, где вода движется от более крупных к менее крупным зернам и где одновременно происходит коагуляция.

Важным элементом обработки воды в отстойниках и на фильтрах является ее коагуляция - процесс укрупнения коллоидных и диспергированных частиц, происходящий вследствие их слияния под действием сил молекулярного притяжения.

Коагуляция проводится при рН воды в пределах 5.0-75. Различают коагуляцию в свободном объеме (в камере) и контактную коагуляцию (в слое зернистой загрузки фильтров контактных осветителей). В каче­стве коагулянтов используют сернокислый алюминий, хлорное железо, железный купорос, сернокислое трехвалентное железо и пр. Для усвоения коагуляции применяют активаторы - активированную кремнекислоту, щелочной крахмал, альгинат натрия, различные синтетические флоккулянты, полиакриламид, магнетит (Mac Rae i.C. et al., 1984) и др. Образующиеся хлопья коагулянта выпадают в осадок, а затем удаляются. Значительная часть микрофлоры, находящейся в воде в процессе коагуляции, отстаивания и фильтрации удаляется из воды.

Имеется ряд исследований по изучению эффективности различных методов очистки питьевой воды в отношении освобождения ее от микрофлоры. Так, С.С.Блиох с соавт. (1957) установили, что в контактных осветителях коли-индекс и общее количество микробов снижается на 84-99%. По данным З.М.Эвенштейн (1968) после двукратной фильтрации через песок микробное число невской воды снизилось на 37.1%, а коли-титр увеличится на 26%. После 4-х часовой обработки сернокислым алюминием удалось полностью обеззаразить воду. По Г.П.Зарубину и И.П.Овчинкину (1974) вода освобождается, таким образом, от 95-99% бактерий.

Н.А.Савельева с соавт. (1980) получили хорошие результаты при использовании такого фильтрующего материала, как гранодиорит. Яровой П. И. с соавт. (1988) указывают, что оросительная система из каска­да бассейнов может в известной степени обеспечить эпидемиологическую безопасность речной воды, используемой для орошения. Большое исследование по изучению эффективности фильтрования природных вод привели И.И.Беляев, Ю.И.Колодный. Авторы пришли к заключению, что эффект задержки загрязнений на фильтрах зависит от высоты фильтрующего слоя, рационального подбора коагулянта и правильного выбора места ввода реагентов.

Важно, что указанные формы обработки воды действуют не только на бактериальную, но, пожалуй, еще в большей степени на вирусную микрофлору. Так, S.Z.Chang с соавт. (1958) показали, что при коагуляции воды сернокислым алюминием и хлорным железом содержание вируса Коксаки снижалось на 95-99.6% (в зависимости от концентрации квасцов и температуры, при которой шла коагуляция). По Robeck с соавт. (1962) в процессе фильтрации, фильтрации и скоростной коагуляции, концентрация искусственно внесенного полиовируса 1 типа, снижалась на 98-99%. Медленная фильтрация давала лучший эффект, чем скоростная. Аналогичные результаты были получены J.M.Faliquet и J.Michelet (1969). В обзоре G.Berg (1975) приводятся данные работ York, Dreury об эффективном освобождении воды от полиовирусов и фагов (использованных в данном случае, как индикаторы вирусов) под воз­действием осаждения взвесей сульфатом алюминия и хлоридом железа, причем на эффективность обработки оказывала влияние правильная подборка концентрации квасцов. М.И. Рункевичус (1974) показал, что присутствие в воде примеси пестицидов не влияло на адсорбцию вирусов в процессе фильтрации.

Несмотря на то, что антимикробное и антивирусное действие от­стаивания, фильтрации и коагуляции можно считать бесспорно дока­занным, отсутствие полного эффекта от этих методов заставляет при­бегать к собственно обеззараживанию воды. Освобождение воды от микроорганизмов может быть достигнуто применением химических и физических методов. Из всех предложенных к настоящему времени методов антимикробной обработки воды наибольшее распространение получило хлорирование.

Хлорирование воды может проводиться как газообразным хлором, так и рядом препаратов, содержащих хлор: хлорной известью (получается при воздействии хлора на гашеную известь и содержит 40-45% гипохлорида кальция), гипохлорид кальция - Са(OCl)2 - со­держит 45% Cl; хлорами, с двуокисью хлора - ClO2. Расход препарата рассчитывается на активный хлор - количество газообразного хлора, соответствующее количеству кислорода, выделяемому этими соедине­ниями.

При выделении хлора в воду образуются хлорноватистая и соляная кислоты: Н20+С12=НОСl+НСl. В дальнейшем происходит диссоциация хлорноватистой кислоты: НОСl      H++OCl-. Cумму С12+НОС1+OCl- -называют свободным активным хлором. НОС1 и OCl- обладают бактерицидными свойствами, на механизм действия которых имеются разные взгляды. Так, высказывают мнение, что действие хлора обус­ловлено его воздействием на протоплазму (Chang, 1944), поражением жизненно важных функций клеток (П.Ф. Милявская, 1947), разрушением энзимов, содержащих SH-группы (Knoh, Stumps, Green, Auerbach, 1948), угнетением дегидраз (Н.Н.Трахтман, 1946, 1966, Г.П. Першин, 1952;Р.К.Липинская, 1960, Г.П.Зарубин и Ю.В.Новиков, 1976). По данным А.М.Скидальской (1969) хлор действует угнетающе на активность дегидрогеназ, подавляет глютаматдекарбоксилазу, но не изменяет нуклеиновый состав ДНК.

Если в воде нет соединений аммония, то введенный в воду хлор находится там в виде хлорноватистой кислоты и гипохлорит-аниона, то есть свободного хлора. При наличии в воде аммонийных и органичес­ких соединений, содержащих азот (протеины, аминокислоты) введенный в эту воду хлор образует с указанными соединениями хлорамины и хлорпроизводные - это “связанный активный хлор”.

Бактерицидное действие хлора зависит от ряда дополнительных факторов и, в частности, от температуры воды. При низкой температу­ре (0-4°) бактерицидное действие небольших доз хлора снижается, од­нако обычно применяемые на практике дозы хлора достаточно хорошо действуют при низких температурах (Е.Д. Петряев и Н.Т. Тоаюрская, 1954). Хлор лучше действует при низкой рН, так как при таких рН лучше сохраняется активность хлорноватистой кислоты (MX.Маркарян, 1952).

Бактерицидное действие хлора снижается в присутствии некоторых поверхностно активных веществ, детергентов и некоторых пестицидов. М.А.Губарь и Н.Д.Козлова (1967) установили, что при концентрации 05 мг/л свободного хлора, или 1мг/л связанного хлора при 30 минутном контакте удается добиться качества воды соответствующий ГОСТу, если в исходной воде содержалось не более 104 кишечных палочек. При обеззараживании воды с более высокой степенью исходного зара­жения необходимо применять усиленный режим обеззараживания - перехлорирование.

Вода обладает способностью “поглощать” определенное количество хлора. Это явление называется хлоропоглощаемостью или хлорпотребностью воды. Расход хлора повышается, если в воде имеются органи­ческие азотистые соединения, гуминовые вещества, соли двухвалентно­го железа, карбонаты и некоторые другие соединения.

Для обеспечения бактерицидного эффекта доза хлора должна быть равна хлорпоглощаемости воды плюс некоторое количество избыточно­го хлора. Доза хлора считается оптимальной, если после 30 минутного контакта остается 03-05 мг/л свободного хлора (НОСl или ОCl-) или после 60 минутного контакта остается ОД-12 мг/л связанного хлора (H2Cl, HCl2). Это так называемый остаточный хлор, т.е. хлор остав­шийся после хлорпоглощения воды и действия на микроорганизмы.

Вопросы, связанные с остаточным хлором освещаются в ряде работ (А.И.Изъюрова и А.Я.Звенигородская, 1943; В.А.Страхова, 1947- П.Н.Яговой, 1961; М.А.Губарь и Н.Д.Козлова, 1966; А.А.Семенова, 1977; С.Н.Черкинский, В.А.Рябченко, Н.А.Русанова, 1978 и др.), согласно которым имеется большая разница в свободном остаточном хлоре и оста­точном связанном хлоре. Считают, что бактериологическое действие свободною активного хлора в 25 раз (Д.М.Минц, 1962) и даже в 100 раз (П.Я.Яговой, 1961) выше, чем связанного.

Хотя остаточный хлор и способен в определенной степени проти­востоять вторичному заражению воды (т.е. заражению воды уже про­шедшей обеззараживание на головных сооружениях), однако это дей­ствие незначительно и полагаться на бактерицидное действие остаточ­ного хлора не следует. В первую очередь остаточный хлор должен рассматриваться как показатель достаточности хлорирования воды на головных сооружениях.

Помимо обычной методики хлорирования воды (обычные дозы для филированной воды 0.75-2.0 мг/л, для не фильтрованной - 3-5 мг/л, более точно доза хлора устанавливается опытным путем и зависит от хлорпоглощаемости воды) существует несколько вариантов обеззаражи­вания воды хлором.

Двойное хлорирование - введение хлора до и после филы рации воды - проводится при большом микробном загрязнении воды. Обычно в первый раз доза 3-5 мг/л, во второй 0.7-0.2 мг/л.

Далее:

 

247. Просо посевное.

Очищение печени маслом..

Если груди болят.

Чистота и кожа.

3. Показательный обзор формирования клинических заключений.

Статическая гимнастика.

Авторский реферат.

 

Главная >  Публикации 


0.002